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ABSTRACT

Albadareen, Baker Ishaq. Adaptive Kernel Estimators for Population Abundance
Using Line Transect Sampling. Master of Science Thesis, Department of Statistics,

Yarmouk University, 2011 (Supervisor: Dr. Omar Eidous).

This thesis introduces variety of adaptations of the classical kernel estimator using line
transect sampling. Several new estimators are proposed and the simulation technique is
adopted to compare the performances of these estimators with respect to the classical
kernel estimator aiming to identify the most promising estimator. Moreover, other
adaptations of the resulting estimators are devoted to correct the negative bias that
associates the classical kernel estimators. Some applications of these estimators on real

data sets are addressed and discussed.

Keywords: Kernel Method, Line Transect Method, Nonparametric Estimators,

Bandwidth, Simulation.
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CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

Many of the wildlife population studies require an estimation of the population density
(abundance). The population density can be estimated by several techniques, one of the most
important and efficient technique is the line transect sampling. The populations in line
transect sampling might be animate or inanimate items such as animals, birds, trees ... etc.
(Burnham et. al., 1980}.

In line transect method, an observer attempts to estimate the population density D
(abundance) by moving across study area following a line with length L. The observer
looking to the right and to the left of the line and it is not sufficient just to record the number
of observed objects, #. Instead, the observer must take the perpendicular distance (x) from the
line to a detected object as illustrated in Figure (1.1). The fundamental property and
advantage of line transect sampling is that not all objects in the study area must be detected,

some objects will be missed. Figure (1.2) shows the detected and missed objects together

“with the perpendicular distances of the detected objects. Moreover, the logical assumption is

that objects near the transect line has a grater probability to be detected than objects far from

the line.
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® detected object *

observer

Figure (1.1): The perpendicular distance (x) from the line to a detected object.
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transect line  x, 4“;\
with lengthL

hl

®

Figure (1.2): The missed objects are represented byk , whereas the observed objects are represented by &‘

with perpendicular distances x;,x;, X3, and x,
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Assume that the detection function is g(x), that is, g(x) is the conditional probability of
observing an object given that the object is at perpendicular distance x from the line. One of
the essential assumptions for a reliable estimation of abundance by using line transect
sampling is that objects directly on the transect line will never be missed (i.e. g(0) =1).
Another logical constraint on g(x) is that g(x) must be monotonically decreasing with x
(i.e. object with perpendicular distance x; has a greater probability to be detected than object
with perpendicular distance x; when x; <x; ).

Let Xy,Xp,... X, be a random sample of size n perpendicular distances that follow the pdf
f(x), and let D be the density of objects in a specific study area. Burnham and
Anderson (1976) derived a fundamental relationship between g{x), f(x) and D. They

showed that f(x) is related to g(x) as

. ax)
F&®) = oeom

That is, f(x) is just g(x) scaled to integrate to 1 and hence,

1
0) ==—,

0 fy g(x)dx

because g(0) = 1. In addition, they showed that the population density D satisfies the

following relationship:

_EM O
D= =, (L1)

where n is the number of detected objects, E(n) is the expected value of n and L is the

length of the transect line. The estimator of D is (Burnham et. al., 1980)

n f(0)
2L

D= (1.2)

where f(0) is an estimate of the underlying probability density function of perpendicular

distances evaluated on the transect line (i.e. x = 0).
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Thus, in order to estimate D, the crucial problem in line transect sampling is to estimate f(0)
as equation in (1.2). In addition, when the estimator of D is obtained then one can obtain the
estimator of the population size N, which is given by:

N=A4D,

where A is the population area.

With few exceptions, two separate approaches have been proposed and developed to estimate
£(0) in the literature. The first one is the parametric method and the second one is the
nonparametric method. The parametric method assumes a functional form of the detection
function with unknown parameter 6 (6 may be a vector) and then an efficient method of
estimation such as the maximum likelihood technique can be used to estimate 6.
The most popular parametric functions that used to model the detection function g(x) are:
(1) The exponential detection function with the form (Gates et. al., 1968)

glx)=e*? x>0,020

which indicates f(0) =3 and the MLE of f(0) is f(0) =2, where X is the mean of

perpendicular distances X1, X3, ... Xy .

(2) The half-normal detection function with the form (Hemingway, 1971)
glx) = e ¥ 12 x>0,0>0),

2 2n

which gives f(0) === . Then the MLE of £(0) is f(0) = =

The half-normal detection function satisfies the condition g'(O) = 0, while the exponential
detection function does not. The condition g'(O) = 0 is known in line transect literature as

the shoulder condition, which indicates that, detection remains nearly certain at small

distances from the line transect center.
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(3) The exponential power series detection function with two parameters (Pollock, 1978)

gx) =e &M x>0,2>0a>0,

which gives f(0) = :1-1:(1—4_13 . The MLE of f(0) does not always exist in a closed form and

therefore a numerical method is needed to estimate £(0). The exponential power series model
is more flexible than the previous two models. It incorporates the exponential model
(if & = 1) and the half-normal mode! (if @ = 2) as special cases. Other models with two
parameters are given by Burnham et. al. (1980) and Buckland (1985).

The parametric approach performs well when the detection function g(x) (and consequently
the pdf f(x) of the data) is chosen correctly. Otherwise, the performance of the parametric

approach is not satisfactory (Buckland et. al., 2001). Therefore, if the parametric approach

doesn't satisfy adequacy, the nonparametric approach is candidated as an alternative approach

to estimate £(0).

1.2 KERNEL METHOD

The kernel method provides a nonparametric estimator for f (0), which can be considered as
a development of histogram for density analysis. This method smooths the histogram density
shape as shown in Figure (1.3). The kernel estimator requires no assumptions about the shape
of the detection function. It allows the data at hand to talk about itself and then to determine
its appropriate probability density function.

The kernel method was introduced by Fix and Hodges (1951) as a way of freeing
discriminate analysis from rigid distributional assumptions. Since then it has been developed
and used in several statistical applications. Moreover, we can be found the full description of

the kernel method in Silverman (1936).
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In the recent years, the applications of kernel method are increasing and are distributing at
various categories as: astronomy, ecology, earth sciences, econometrics, medicine, water

science, etc. (Mack et. al. ,1999)
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Figure (1.3): An example of nonparametric density estimation. The broken line represents the true population

density and the solid line represents the kernel density estimator.
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Let X, X3, ... X, be a random sample from a continuous pdf f(x), the classical kernel density

estimator for £(x) is f (x) , which is given by (Silverman, 1986),

X=X

fo =L k(5 | ~w<x<o, (1.3)

where K is a symmetric pdf function called kemel function and 4 is a positive real number
usually called the bandwidth or the smoothing parameter. Under the assumptions that h — 0
and nh — oo when n — oo, Wand and Jones (1995) gave the statistical properties of f(x)
that contained a small valued terms o(h?) and o[(nh)~1], and if these small valued terms

ignored then the remaining terms known as asymptotic properties.
The expected value of f(x)is
E(f00) = FG) +3h? £ () [, 22K (B)dt + o(h?) ,

and then the bias of f(x) is

bias(f(0)) = 3h% £ () [, K (8)dt + o(h?)
and the variance of f(x) is

var(f(0) == F() [T [K@®I2dt + o[(nh)™] .
The asymptotic mean square error (AMSE) of Fx) s,

AMSE(f () = var(f(x)) + bias?(f(x)) ,
=L [T K@PRde+ R £ (0 [, e2K(dt], (14)

The first term of the right hand side of (1.4) is the asymptotic variance and the second term is

the asymptotic squared bias of f(x). As (1.4) shows, the AMSE converge to zero as h — 0

and nh — oo when n — oo,

In line transect sampling the perpendicular distances Xy,X3,..X, are non-negative.

Therefore, we need the kernel estimator £(x) of f(x) being defined for non-negative range.
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If 0 <x < o, the kernel estimator for f(x) is (Chen, 1996a),

A _ 1 on X=X x+x;
fi)= nh E"=1(K( h )+K( h )) y0sx <o .
Consequently, the kernel estimator of f(0) is,
2
foy= k(R (15)

Note that, K is a symmetric function, which indicates that K (::—‘) =K (%)

Under the assumption that the shoulder condition is true (i.e. f '(0) = 0), the bias and the

variance of estimator (1.5) are given by

bias (f(())) = h2f" (0) f;” C*K(Y) dt + o(h?) (1.6)
and
var (£(0)) = 29 [k (O] dt+ ol(nh) 1], (1.7)

It becomes well known that the performance of the kernel estimator is very sensitive to the
choice of the bandwidth A, while it is not for the choice of kernel function K (Silverman,

1986). In addition, the estimator (1.5) produces an estimate with a large negative bias.

1.2.1 BANDWIDTH SELECTION

The determination value of the bandwidth # has an important impact on the performance of
the kernel estimator, which can be selected by using several approaches. One of the most

common methods in kernel density estimation is to find # that minimizes the AMSE, which

compromises between the variance and bias of £(0).

The asymptotic MSE of f(0) can be obtained based on (1.6) and (1.7), which is given by,

AMSE (£(0)) = L2 [ [k (&)]? de + B [f" (0) ;" 2K (2) dt]”. (1.8)

10
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By considering equation (1.8) as a function of & ( say, T(h) ) then differentiate T(h) with

respect to / and then equating the result by zero, this yields,

1

o 2 5
h=( f(O)f(,m[K(t)] dt 2) n-1/5 (1.9)
[f 0) ;" t2K () dt]

The equation (1.9) is somewhat disappointing since it shows that A itself depends on the
unknown f(0) being estimated. However, it shows that h— 0 and nh > ® as n— .,
The rate of convergence for the AMSE of £(0) can be obtained by substituting the value of

(from (1.9)) back into (1.8). This yields,

4 2

4 o0 " 0 5
AMSE (f(())) = 5nS[F(0) [ IKOP AL 7@ fy K@ de] . (1.10)
Different methods to obtain the value of & in practice are studied and compared by Gerard
and Schucany (1999), who recommended to use the half-normal function as a reference to

compute k. Accordingly, in Section (2.4) we used different bandwidth values to investigate

their effect on the proposed estimators of f(0).

1.2.2 KERNEL FUNCTION

The selection of kernel function K is discussed in Silverman (1986). He reported that all
functions K(t) that satisfy [* K(t)dt=1, [~ tK()dt=0& [ t2K(D)dt#0
which perform equally good results in estimating f(x). The following functions satisfy the

above constraints and therefore they can be used as kernel functions (see Silverman, 1986):

(@ K(t) == ,|t| <1, (Rectangular kernel)

[N 4

by K(® =2 (1-3t*) V5 ,Itl <5 , (Epancchnikov kernel)

() K(t)= \7% e’ /2 _oo <t < o ,(Gaussian kernel).

11



© Arabic Digital Library - Yarmouk University

Usually, the kernel function K is chosen to be a unimodal and symmetric density to yield

unbiased estimates by using a symmetric distribution of the weights on both sides of the point
of estimate. However, the kernel functions that do not satisfy these requirements are
inadmissible (see Cline, 1988). In this study, the kernel function K is chosen to be the
Gaussian kernel unless otherwise is stated. Assume that X is the Gaussian kernel (i..
K = N(0,1) ) and f(x) is the half-normal with scale parameter a? then the optimal value of

h based on equation (1.9) to estimate f(0) is

1
h=10648n7s (111)

"
where §is the maximum likelihood estimator of ¢, which is given by & = &Eéit

The formula (1.11) is recommended by Gerard and Schucany (1999).

1.3 LITERATURE REVIEW

The line transect sampling comprehensive reviews can be found in Seber (1982) and
Buckland et. al. (2001). Quang (1990) presented a method of deriving an approximate
confidence interval for the abundance D. Chen (1996a and 1996b) estimated the density
(abundance) of population based on explicitly modeling the probability density function of
the perpendicular sighting distances without any assumptions on the form of the detection
function. He proposed the classical kernel method to estimate D. Buckland (1952) proposed a
Hermite polynomial model to estimate f(0). Barabesi (2000) used a local likelihood density
estimation to reduce the boundary bias. He also proposed a semiparametric kernel estimator.
Also, Barabesi et. al. (2002) developed a semiparametric method for grouped data with local

least squares to obtain estimates for £(0).

12
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Melville and Welsh (2001) proposed an approach to line transect sampling using a separate
calibration study to estimate the detection function. Marques (2004) investigated the effect of

error measurement on line transect estimators.

Recent years researches have focused on the use of kernel density estimation method to
estimate f(Q) and consequently the population abundance D. Mack (1998) used the kernel

method to test the validity of the shoulder condition assumption. Mack et. al. (1999) proposed

. kernel estimation in transect sampling without the shoulder condition assumption.

Gerard and Schucany (2002) suggested a method to combine kernel estimators from
individuals transects when each transect has sufficient data to support estimation.
Mack (2002) investigated some methods to correct the bias when kernel method is used in
constructing confidence intervals for population abundance. Eidous (2005) investigated some
possibilities for improvements of kernel density estimates using line transect sampling and he
proposed two nonparametric estimators.

Fewster et. al. (2005) considered line transect sampling in small and large regions. There are
some other methods for line transect sampling and some applications, such as, Hiby and
Krishna (2001) who studied line transect sampling from a curving path. Okamura (2003)
proposed line transect method to estimate abundance of long-diving animals. Marshall
et. al. (2008) considered the problem of selection of line transect methods for estimating the
density of group-living in Primatology. Gong et. al. (2010) have construct confidence
intervals based on kernel estimation with a different stopping rule. Eidous (2011) suggested
the variable location kernel method to estimate f(0) using line transect technique.

Eidous and Shakhatreh (2011) proposed a semi-parametric estimator for f(0) when the
shoulder condition is assumed to be valid and when it is violated. Their estimator combines

between the kernel estimator and a specific parametric estimator.

13
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1.4 RESEARCH OBJECTIVES

This thesis aims to propose and to study the performances of new adaptations of kernel
estimators. The proposed estimators are compared with the classical kernel estimator f(0),
which is introduced by equation (1.5). Also, we study and compare the performance of the
new estimators with different values of the bandwidth h and the parameter p (will

be discussed in Chapter II).

Moreover, we will try to correct the negative bias that associated the classical kernel
estimator £(0) by multiplying this estimator with some correction factors (will be discussed

in Chapter II).

At the end, we will study the different proposed estimators for two real data sets.

1.5 THESIS QOUTLINE

This thesis is organized in the following manner. Chapter I covers vital concepts about line
transect sampling and the traditional kernel estimator for f(0). In addition, some existing
methods to estimate f(0) are introduced in this chapter.

Chapter I introduces the main results of this thesis. The different proposed estimators are

given in this chapter together with their simulation results. An important theorem related the
proposed estimators is stated and proved in this chapter. In chapter III, we use the proposed
estimators and the classical kernel estimator to estimate the population abundance for two

real data sets. And in chapter IV, we suggest some conclusions and implement future

research.

14
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CHAPTER TWO

ESTIMATION OF f(0)

2.1 INTRODUCTION
In this chapter we introduced a nonparametric estimator for the parameter f(0) using line
transect sampling. The proposed estimator is a general form that considers the classical kernel

estimator as a special case. Some mathematical properties related to the proposed estimator
are given in this chapter and the simulation technique is used to investigate the performance

of this new estimator. The effect of the choice of the bandwidth 4, the sample size n, and the

choice of the detection function model is also addressed.

2.2 PROPOSED KERNEL ESTIMATOR

The classical kernel estimator using line transect sampling gives a poor performance in some
cases with a large negative bias (see Quang, 1993 and Eidous, 2005). In this thesis we are
trying to adaptive this estimator. In addition, we will refer to the estimators that give poor
performance —with respect to the classical kernel estimator f (0)- so as to exclude them in
future research.

A deep insight into equation (1.5) indicates that the classical kernel estimator f(0) is the

i 2 2
mean of the random variables ¥;,Y;, .., Y, , where ¥; =+ K(%) , o=+ K(fhi) ) e
2 Xn
to= K (%)

Therefore, estimator (1.5) can be re-written as the following:

HOEI-D A 2.1)

15
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Because the estimator in (2.1) is a measure of center (mean) for the values 1, Yo, o, Yy, WE

propose to consider the general measure of center estimator, which is given by

1

@ =G oy (2.2)

where Y; =-}2: K (%) ,i=1,2,..,n and p € R. Now, the estimator (2.1) is a special case of

estimator (2.2) when p = 1, The main central idea in this thesis is to study the statistical
properties of estimator (2.2) for different values of p. In addition, a new estimator that
combines the classical kernel estimator, f (0) and estimator (2.2) is proposed to reduce the

negative bias that is associated f(0) and its statistical properties are also studied.

As special cases of f:,(O), we will consider —in particular— the following five estimators:
(1) For p = 1then (2.2) reducesto (2.1). We denoted the resultant estimator by £1(0) and

call it the mean kernel estimator.

(2) For p = —1, we obtain,

-1

n
A 1 -1 n n
f‘l“’)‘(FZ“ ) ST, 1, .1 Eyn 1
i=1 AR A A 5 Zie TR

f-1(0) is the harmonic mean of 11, Y3, ..., ¥,,. We call f_1(0) the harmonic kernel estimator of

£(0).

(3) As p — 0, we obtain the geometric kernel estimator, which is given by

. 1
lim £,(0) = (A Y, . Y,)s

16
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For simplicity, we denote the above estimator by £5(0). The proof of the above result is given

below.

Proof:

1

n 1 =
f@=(>Zr ¥y
1
_ (ZLYP)P
= ==
(m)p
By taking the natural logarithm of both sides, we obtain,
1 (< 1
inﬁ,(o) =—In Z Y/ |—=lnn
14 s [4

_In( Y P)—Inn
. :

Therefore,

m(ZL,Y)-inn
p L]

lim Inf,(0) = tim

By using L’Hdpital’s rule we obtain,

In(EL,Y;?)-Inn

Il)ll?(} Inf,(0) = él_‘.:?él

i1 Y7 In(¥) — 0

= lim 2io Y
p-0 1

TN

- ?:1 ln(YI)
=11

1
= ;I'ln(Yl.Yz vee Yn)
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1
lim In f,(0) = Y .Yz . Yy)m -
p-0
1
Because 5% lnf;,(O) = [ni{¥,.Y; ... Y,)» ,then

L L
lim £,(0) = eI < B, . By

Thus,asp = 0

£(0) = (MY, .Y,

SN

(4) For p =15 , we obtain,

, 13
Fis(®) = (5 ZYE)

) -2(T)

(5) For p =2 , we obtain the quadratic kernel estimator,
1

. 1.\
f(0) = (;ZY&)

i=1

JY]_Z + Yzz + b + Ynz
n

18
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(2e@) +(3e@) ++(Gr)

f(0) =
We note here that there are many other possible values for p which can be selected from the

range of p where p € R.

2.3 PRELIMINARY SIMULATION RESULTS

A preliminary simulation study is performed to investigate the performances of f;,(O) for
p =-1,0,1,1.5, 2. In addition, some other estimators when p < —1 and when p > 2 are
also investigated.

In this simulation study, we selected K(x) to be Gaussian kernel (ie. K = N(0,1)) (see

Subsection 1.2.2) for all estimators and the smoothing parameter h is computed by using the

equation h = 1.06 & n_%, also for all estimators, where & is the MLE of & (with reference to
half-normal model) (Chen, 1996a and Gerard and Schucany, 1999).

The interested proposed estimators are implemented using data that are simulated from 12
detection functions. These 12 detection functions are selected based on three families of
models, which are commonly used as references in line transect studies (see Barabesi, 2001
and Eidous, 2005).

In this simulation study, the 12 detection functions were truncated at distance v, where the
truncation point +¢ in line transect sampling is defined to be the maximum perpendicular
distance at which the distances beyond this value are ignored.

The three families are:

19
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a) The exponential power (EP) family (Pollock, 1978)

= x>0,821,

FO) =
X)=——7r<¢
ria+1/8
with detection function g(x) = e=**  Four models were selected from this family with
parameter values § = 1.0,1.5,2.0, and 2.5 and corresponding truncation points « = 5.0,

3.0,2.5 and 2.0 (see Figure 2.1).

b) The hazard-rate (HR) family (Hayes and Buckland, 1983)

____1__ _—xF
f(x)-r(l_llﬁ)(l ") . x20,8>1,

with detection function g(x) =1 — e~*  Four models were selected from this family with
parameter values § = 1.5,2.0,2.5, and 3.0 and corresponding truncation points w = 20.0,

12.0,8.0,and 6.0 (see Figure 2.2).

¢) The beta (BE) model (Eberhardt, 1968)
f=1+p1-x¥ , 0<x<1,20,

with detection function g(x) = (1 — x)B. We selected four models from this model with
parameter values § = 1.5,2.0,2.5,and 3.0 and w = 1.0 for all cases (see Figure 2.3).
These 12 detection functions cover a wide range of possible models for perpendicular
distances in practice, which vary near the perpendicular distance x = 0 from spike to flat.
The spike property occurs for models with f'(0) # 0 (e.g. EP model with f =1 and BE
model with all values of ), while the flat property (known in line transect literature as
shoulder condition) occurs for models with f "(0) = 0 (e.g. EP model with § =1.5,2.0,25
and HR mode! with different values of 8 ).The simulation results are based on simulated
1000 samples of size n = 50,100, 200. For each estimator, we compute the relative bias RB,

E(f(®)-£©)
B="fo
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and the relative mean error RME,

MSE (f(o))

RME:_FO)_-— .

The important results of the preliminary simulation study were:

a. The estimator f;(O) is very sensitive to the choice of p (i.e. the variation of pis a critical
point in the estimation performances using RB and RME).

b. The performances of f,(0) and f-1(0) are very bad —with respect to the classical
kernel estimator f(0) — (see Table 2.10).

c. Fixed the value of p, the performance of ﬁ (0) can be improved by changing the value of
h for some values of p (1 < p < 2). However, for many values of p, the performances
of f; (0) cannot be improved for any values of k, specially when p takes values near zero
or less, and when p takes values greater than two.

d. The performances of fp(O) are satisfactory for 1 < p < 2. The performance of f;(O)
becomes very poor as we take p away below 1 or away above 2.

Therefore, the two estimators £, (0) and £5(0) are excluded in this study. Instead of them,

we will consider the estimator f,(0) with p = 1.1and p = 1.3, which are given below:

1/1.1

f11(0) = (nl ZYIM) ,

and

1 n 1/1.3
fl.?; (0) = (.n_ ZIKIB) )
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Many other possible values for p that fall in the interval [1,2] cab be chosen. However, we

restrict our selection for the values p =1.0, 1.1, 1.3, 1.5 and 2.0. We expect that these values

give us a good idea about the performances of ﬁ,(O) forall p € [1,2].
Before we are going throughout the studying of the practical implementation of the above

estimators we state the following important theorem.

Theorem (2.1):

A 1/p )
Let £,(0) = (-i— ) Yip) and let ¥; = %K (-J;T‘), i =1,2,..,n, then for a fixed value of A,
(1) limf£,(0) = max{¥;, Vs, .., ¥}

p—mo
) plquw £(0) = min{¥y, Yy, .., ¥}

) ﬁ, (0) is non-decreasing function in p.

Proof of Theorem (2.1)

(1) Let Y(y) be the maximum value of Y, Y3, ..., ¥y, That is
Y(‘n) = maX{Y]_,Yz, ey Yn} .

Now,

B n
1
In £,(0) =E -ln(ZYip)—lnn]
1[ Y, YV Y, \’ Y, \’
nlrr () +(7) ++ () -]
_ Yim) D) Y
InY,, +1In —) +(——) +--~+(—") )—lnn]
P e ((Y(n) Yoy Y
i) () ++ (7))
=1 —2 n
In ((Y(n)) +(Y(n) Foet Yoy) /] Inn
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Now,

Y\ (Y Y Y, \P
o) -5+ )
Y Yin) Yin)

p

- 0.

IHEI; In f; (0) =In Y(n) + gl_{l;lo

By using L'Hapital’s rule for the second term of the right hand side we obtain,

() () + () () + -+ ) m ()

lim
& B G+
Yin) ) Yoy

Since the term Y(n) equals at least one of the values ¥;, Y5, .., ¥, then at least one term in the

denominator equals one and the other approach to zero when p = . Also, at least one term
in the numerator equals In(1)} = 0 and the others approach to zero when p — 0. That is, all

terms in the numerator are zero when p — oo, Therefore, the limiting is zero and then

lim In £,(0) =Y, ,

pco
which implies,
ﬁ,(O) = Ym)

= max{Y,, Y, ..., Y} .

(2) Let Yy be the minimum value of ¥y, Y, ..., V.. That is

Y(l) = min{Yl,Yz, ey Yn} .

Y

Same as (1) but we take ¥y as coefficient of the terms Yi+Y; + -+ ¥, as (;;) . Then

£(0) =Yy

= min{Yl, Yz, vy Yn} .
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(3) We need to prove that f:,(O) is a non-decreasing function in p.

Let a=Y;, b =Yy and x = p ,where a,b > 0 and x € (—,0)

then
x x, 1/
7,0 = 6 = (E52)
Inf(x) = % [in(a* + b*) —in2]
= % ;ln [a" (1 + (g-)x)] —In 2]
= % :x Ina+ ln(l 4 (g)x)—znz]
b X
_ lna+ln(1+ (E) )—lnz -
x
Now,
L nfeo = ﬁg
W', (b
x (E) l?:’(g) —In (1 + ( )x) +in2
1+(3)
= >
Therefore,

o= 2 « £().

To show that f(x) is non-decreasing in x, it is enough to show that f'(x) = 0,Vx.
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Because f{x) > 0, Vx then from the last expression,

rez0 7 Al -1+ () #im2ze

Sy

iff (D) /+0) 2 1n (B} | where D = 2>0

xD* x

- 1+D
5 X T e
iff Di+0™ = >

x
. ¥D* (1+DI)1+D
‘U_rf b = 214D%

I..}.‘f 21+DxDxD" > (1 +Dx)1+Dx

iff 2RY1IRR > (R + 1”*!, where R=D* , R>0

iff R = (RH)RH

2

i (R+1)R R+1 ™ =1 .

Consider the left hand side of the last expression as a function of R (say g(R)) then

g(R) = (sz 1) E% ;
and
Ing(R) =R[In2+InR—In(R+ 1] +In2—-In(R + 1).
Now,
1 1
J(R) = [R E—E—ll+ln2+lnR—ln(R+ D - |9 ®

=[n2+InR—1n(R+ 1}]g(R) .

For the last expression, take g'(R) = 0 then In2 + InR —In(R + 1) = 0 because

g(R) > 0,V¥R > 0. Therefore,
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2R _ o which implies €® = 2 _ s o
In—=0 which implies e” = -— and then 2R = R + 1. This gives
R=1

is the root of g'(R} .

Now, check the sign of g'(R) for 0 < R < 1 and for R > 1, you obtain

gQR)
+++++++

Re0 R=1
which indicates that g(R) decreases for R € (0,1) and increases for R € (1, ).
Therefore, R = 1 is a minimum point for g(R) and g(R = 1) = 1 is a minimum value for

g(R). Therefore g(R) =1,V R >0, which indicates that f'(x) > 0. This complete the

proof.

Theorem (2.1) shows how the behavior of fp(O) will be when p increases or when p
decreases. Of course and based on Theorem (2.1), we expect that the performance of f;,(O)
will be not satisfactory when p takes large values or when p takes small values. While we are
searching for a good measure of center for the values Yy, ..., Y, , the above theorem tells us
that fp(()) will tend to be the smallest value of Y;, ..., Y, as p tends to —co and fp (0) tends to
be the largest of Y;,...,Y; when p tends to co. In addition, the above theorem tells us that the

value of estimator f;,(O) will be increased when p increases. Therefore, at some value of p,
the estimator f;(O) becomes overestimate of the true parameter £(0). On the other hand,

when p decreases, the estimator f;,(O) decreases and at some values of p the estimator
becomes underestimate of the true value f(0). However, the determination of the critical
value of p when the estimate becomes overestimate or the estimate becomes underestimate

can’t be determined easily because we are used various models and various bandwidth .
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These results are demonstrated clearly in the tables of simulation results at the end of this

chapter.

2.4 OTHER PROPOSED ESTIMATORS
In this section we introduce other kernel estimators for f(0) using line transect sampling to

enrich this research.

The motivation of the proposed estimators in this section is due to the negative bias that
associated the current classical kernel estimator fl(O). This fact is demonstrated clearly in
Table (2.1) at which the biases of f1(0) are negative for all models that are considered.

Inspection of Tables (2.3) and (2.5) show that the estimator f;(0) produces a negative bias,
even when the value of the smoothing parameter % is slightly decreased or increased. This

means that the classical kernel method produces underestimate values for the true
parameter £(0). This result is also addressed in the work of Chen (1996a), Gerard and
Schucany (1999) and Eidous (2005). To correct this problem, we proposed another set of
estimators in this section. The proposed estimator combines of the classical kernel estimator
and the estimator (2.2). It simply consists of £1(0) multiply by a factor. (Which is greater

than one) used to correct the performance of f1(0). The form of the proposed estimator is,
m=1(0
Fo0) = A,(0) Exp 222 1], 23)

where m € (1,00) . If m = 1 then (2.3) reduces to be £(0).

Based on Theorem (2.1), f:,(O) is a non-decreasing function in p, which indicates that
£,1(0) = f,2(0) ,¥ pl>p2. Because Zm—12m ,V m21 then Frme1(0) = £ (0)

m=1(0)
fn ()

fpz(O)
fpl(

and —1 =0 . Therefore, the factor Exp [f 1] is always greater than or equal

27



© Arabic Digital Library - Yarmouk University

to one. This indicates that £3(0) = f,(0) ,¥ m =1, where the equality of the two

estimators occurs when m = 1.

The question arises now is: why the corrected factor is chosen to be Exp -fz—;.":%)-— 1] ?

Why it is not Exp ';. 2 1] or Exp [&1}@%)— 1] . etc? Or even, why it is not

1 (O
Ex / 1((0) 1] ? Where m; and m, are any two values such that my > m, to ensure that
ma

the exponent term is greater than zero.

The corrected factors that mention in the above questions (or any other suggested factors)
may be worked well, but this needs to study them at least via simulation technique to decide
about their performances. Actually, our simulation trials lead us to use the corrected factor of
the estimator in (2.3), which in turns improves the performances of f,(0) in most cases that

are considered as the simulation results of Tables (2.7), (2.8) and (2.9) demonstrated.

. . 0
However, we introduced other four corrected factors with the form Exp i”i((% - 1], where
mz

m, and m;, are selected arbitrary under the constraint m, > m,. Based on these arbitrary

choices, we proposed the following estimators:

- Fr(0) = A(0) » Exp [222 — 1]
2 fy0) = (o)~ Bxp [ -
3- f(0) = f1(0) * Exp [;20((;); 1? , and

4 F3(0) = Fi(0) » Exp [0

As we mentioned before, there are many other choices for my and m; to produce new

estimators for f(0).
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2.5 SIMULATION DESIGN AND ESTIMATORS

One of the important techniques used to compare the performances between different
estimators is the simulation technique. Moreover, the researchers may investigate the relative

superiority of each estimator without actually deriving the mathematical properties.

In this section, a simulation study is conducted to compare between the performances —using

RB and RME- of the different proposed estimators. The classical kernel estimator F(0) is

also considered and the performances of this estimator are considered to be a basis of

comparison.

More intetpretative, in this study, we selected K(x) to be Gaussian kernel for all estimators
1

and the smoothing parameter % is computed by using the equation h = 1.06 & n’s, also for

all estimators, where & is the MLE of a.

The data are simulated form the 12 models that are given in Section (2.3). Also, the RB and

the RME are same as given in Section (2.3).

We keep in mind that the estimator f;,(O) is very sensitive to the choice of p and its

performance is very bad for p <1 and for p > 2 (see section 2.3), this simulation study

trying to answer the following questions:

(1) Is the performance of f,(0) acceptable for 1 <p <2?

(2) Can we improve the performance of f;({l) by varying the value of the smoothing
parameter 4 7

(3) Are the arbitrary estimators £ (0), fi (0, £:(0) and ﬁ,' (0) give any improvements over

the estimater f;(O) ?
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(4) Can we improve the performances of these arbitrary estimators by changing the
smoothing parameter 2 ?
(5) Does the formula of the proposal estimator fa(0) work well to estimate f(0)? What is

the best value form 7

To answer Question (1), four values of p are selected, which are p = 1.1,1.3,1.5,2, and
besides the value p = 1 which gives the classical kernel estimator F(0), ie. f1(0) = £(0).

The stimulation results are given in the first five columns of Tables (2.1) and (2.2).

To answer Question (2), the optimal rule h = 1.06 n"é (Gerard and Schucany, 1999) for
the smoothing parameter  is used then we vary A by multiply it with 1.2 and 0.8. This gives
new smoothing parameters; hy = 1.2h and h; = 0.8h. These new values for the smoothing
parameter are also considered to answer Question (4).

It is worthwhile to mention here that other values for the smoothing parameter with
coefficient smaller than 0.8 and greater than 1.2 were also considered. In particular the
coefficients 3,2,1.5,0.6,0.5,0.2 are considered (and the result are not shown) in this thesis.
Unfortunately, the results its —based on the preliminary simulation study— showed that there
is no improvements can be obtained when we used for these coefficients. The simulation
results when hy = 1.2k for the different estimators f:,(O) with p = 1,1.1,1.3,1.5,2 and for
£7(0), £(0), £ (0) and f; (0) are given in Tables (2.3) and (2.4), while the results when
h, = 0.8h are given in Tables (2.5) and (2.6).

Note that £(0) = £,(0) in Tables (2.1) and (2.2), while in Tables (2.3) — (2.6), £(0) used the

optimal rule of 4 but £1(0) used A multiply by the corresponding coefficient of 4.
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Question (3) can be answered by inspecting the results in Tables (2.1) - (2.6), where the last
four columns in each table give the simulation results related the estimators
£1(0), £ (0, 7 (0) and £ (0).

To answer Question (5), the estimator f(0) with m = 2,4,7,12,20,50, 100,200,
1000, and 10000 is studied and the simulation results are presented in Tables (2.7), (2.8)

and (2.9).

The simulation results are presented in Tables (2.1) — (2.9).

2.6 SIMULATION RESULTS

By considering the classical kemel estimator £(0) as a basis for comparison and based on

the simulation results of Tables (2.1) - (2.9), we can conclude the following:

(1) The value of f;,(O) increases as p increases (1 < p < 2). This is demonstrated in
Table (2.1) by inspection the RB of f;_,(O) when p moves from 1 toward 2 and for each

corresponding sample size n. Also, see Tables (2.3) and (2.5).

(2) Despite that the estimator £5(0) performs well in some cases (e.g. EP mode! with

B = 1and HR model with # = 1.5 and 2), it exhibits a poor results —in term of RME~
for the other models. The RMEs of f(0) are —generally— not decreasing when n
increases, which indicates that f;(0) is not even a consistent estimator for f(0).

Again and in terms of RME, the performances of f;,(O) with 1 < p < 1.5 seem to be
quite well, especially for models that do not have a large shoulder at the origin. In other

words, exclude the two models; EP with 8 = 2.5 and HR with 8 = 3.0, then fp(O) with
1 <p < 1.5 gives a good results compared to the classical kernel estimator f;(0) (see

Table 2.2).
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)

4

&)

©)

The estimators f(0), f (0), £7(0) and fi(0) give very similar performances with
overall a slight preference for f;(0). In general, their performances are acceptable
comparing to that of £1(0) (sce Tables 2.1 and 2.2).

The increasing (or decreasing) in the value of bandwidth (smoothing parameter) from &
to 1.2k or 0.8k improve the performances of the different estimators in some case but in

the other cases their performances become worse (see Tables 2.3-2.6). Therefore, we

1
generally recommend to use the rule h = 1.06 & ns without any modifications of this

rule.

The performances of fm(0) were suprising in most considered cases. Therefore, we
selected many values for m to show and to understand how the performances of £2(0
will be for changing value of m. Tables (3.7), (3.8) and (3.9) demonstrate the simulation
results of f(0), at which we introduced the efficiency (EFF) of £ (0) with respect to
£,(0) for simple comparison. Note here that £2(0) with m = 1 gives the classical kemel
estimator fl (0) and the selected values of m were 2, 4, 7, 12, 20, 50, 100, 200, 1000
and 10000. The simulation results demonstrate clearly that f2(0) converges to £1(0) as
m becomes 100 or more. In these cases, you can examine the corresponding efficiencies
of f(0) for the three models; EP, HR and BE and for the different values of the sample
size n. Despite that, all efficiencies of f2(0) (m = 100) are greater than 1, we expect

—due to our experience— that these gains in the efficiency are not significant.

For small values of m (m < 4), the performance of f; (0) is very acceptable for models
that do not have a shoulder at the origin (e.g. EP model with § = 1 and BE model with
different values of B)and also for the models with moderate shoulder at the origin (e.g.
EP with B = 1.5).

32



© Arabic Digital Library - Yarmouk University

7

@®)

The other values of m (7 <m < 50) produced very reasonable estimators. For these
cases, the produced estimators seems to be consistent for £(0) in both cases; when the
shoulder condition for the simulated model is satisfied and when it is violated. The
corresponding efficiencies of fx(0) (7 <m £ 50) are considerable in most cases
compared to the classical kernel estimator f; (0).

We keep in mind the general good performance of f2(0), this estimator can be
implemented in line transect sampling to estimate £(0) and consequently to estimate the

abundance D according to the following rule:

If the collected perpendicular distances Xq, X3, ... Xp seem to be spike at the origin (i.e.
the shoulder condition is not satisfied) then £;; (0) with m around the value 4 can be used.
If the perpendicular distances seem to be have a shoulder condition at the origin then
£(0) with a value of m around 15 can be used. If there is no information about the
model shape of the perpendicular distances then we recommend to use £(0) with a

value of m around 10.

Finally, it is worthwhile to mention here that the shoulder condition of the data can be

checked by using the informal histogram method with 4 to 10 intervals (see Buckland et. al.

2001) or by using the formal method of Zhang (2001).

2.7 DISCUSSION

We were planning in the first stage (phase) of this thesis to study the estimator ﬁ,(O) and to

investigate the effect of varying p and / on its performances.

The first question that was in our minds; can we improve the performance of the classical

kernel estimator £(0) (equation 1.5) by considering f»(0) and then varying the value of p ?
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The second question was; when we decide the best value(s) of p, can we improve the
corresponding estimator by varying the value of the bandwidth (smoothing parameter) & ?

The second question came to our mind due to the well known result that says: 4 plays an
important role in the performance of the kernel estimator (see Silverman, 1986 and Gerard
and Schucany, 1999). After we preparing our simulation programs by using the same

detection functions that stated in Section (2.5), we run our programs by considering the

estimators f(0) and f;,(O) with p = —2,—1,0,1,1.5,2, 3,4 and then for cach value of p we

used the rule h = 1.06&11_; which recommended by Gerard and Schucany (1999) to
compute the smoothing parameter. The results showed that fp (0) gives very bad results when
p < 1 as well as when p > 2 (many other non-integer values for p are also tried). After that
we tried to improve the performance of )‘:,(0) by varying the value of h. We were used the
new values of the smoothing parameter, 3h, 2h, 1 Sh, 1.2h, 0.8h, 0.6h, 0.5h and 0.2h.
Unfortunately, the results of the preliminary simulation study showed that the performances
of f';,(O) cannot be improved (by varying k) for most values of p, specially when p < 0.5 and
when p > 3. However, we found that the case that deserves to pursue is the estimator f;,(O)
when 1< p < 2. Therefore, most results of the preliminary simulation study are not
presented in this work.

One may concludes that the preliminary simulation study was useless. But we belicve that it
was very important for many reasons. Firstly, it tells the researchers to avoid studying the
other measure of centers for ¥1,Y,..,Y, (see Section 2.2) and the mean of Y,.Y2,... %
{classical kernel estimator of f(0)) remains very reasonable and acceptable compared to
other measures. Secondly, some important results of the preliminary study are given in

Section (2.3). Finally, the preliminary study together with Theorem (2.1) lead us to the idea
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of forming estimator (2.3). This estimator —as the simulation results shown— is very important

and it gives a very worthwhile results compared to the classical kernel estimator.
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Figure (2.1): Exponential power detection function, g(x) for $=1.0,1.5,2.0,and 2.5.
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1 2

Figure (2.2): Hazard-rate detection function, g(x) for $=1.5,2.0,2.5, and 3.0.
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Figure (2.3): Beta detection function, g(x) for $=1.5,2.0, 2.5,and 3.0
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Table (2.1 The simulated value of the relative bias (RB) for each estimator by using the bandwidth
1
h=106&n"s

Ii’;?:,“ﬁ;‘;‘d"él n | A©) | Al | Az© | As@ | @ | @ | £©@ | £©@ | O
B = 1 50 -0.35 [ -0.33 -0.29 026 | -0.19 | -0.29 | -0.29 | -0.31 | -0.32
w = 5 100 | -0.32 | 0.29 -0.24 020 | -0.12 | -0.24 | -0.25 | -0.27 -0.28
200 | -0.29 | -0.25 -0.20 015 | -00s | -0.19 | -0.20 | -0.23 | -0.25
B = 15 50 |-0.18 | -0.15 -0.09 004 | 005 | -0.09 | -0.09 | -0.12 | -0.13
W = 3 100 | -0.15 { -0.11 -0.04 0.02 0.14 | -0.03 | -0.04 | -0.08 | -0.10
200 | -0.13 | -0.08 0.01 0.08 023 | 0.02 | 0.00 | -0.05 | -0.07
g = 2 50 -0.09 | -0.06 0.01 0.07 019 | 0.02 | 0.01 | -0.02 | -0.04
w = 235 100 | -0.08 | -0.03 0.05 0.13 027 | 0.o6 | 0.05 | 0.01 [ -0.02
200 | -0.06 | 0.00 0.10 0.19 0.37 | 0.11 0.09 0.03 0.01
B = 25 50 -0.05 | -0.01 0.06 0.12 0.26 | 0.07 0.06 0.03 0.01
w = 2 100 | -0.04 | 0.01 Q.10 0.18 035 |- 011 Q.10 | 0.05 0.02
200 | -0.03 0.03 0.15 0.24 045 | 0.16 0.14 0.07 0.04
Hazard Rate
Model
p = 15 50 | -0421 040 -0.38 036 | -0.32 | -0.38 | -0.38 | -0.39 | -0.40
w = 20 100 | -0.38 | -0.36 -0.33 031 {-027 | -0.33 | -0.34 | -0.35 | -0.36
200 | -0.33 ) -0.31 -0.27 024 | 0191 -0.27 | -0.28 | -0.29 | -0.30
g = 2 50 026 | -0.24 -0.21 019 | -0.14 | -0.21 | -0.21 | -0.22 | -0.23
w = 12 100 1 -0.22 | -0.20 -0.16 013 | -0.07 | -0.16 | -0.17 | -0.18 | -0.19

200 | -0.18 | -0.15 | -0.11 | -0.07 | 0.00 | -0.10 | -0.11 -0.13 | 014

= 25 50 | -013 | 010 | -0.06 | -0.03 | 0.05 | -0.06 | -0.06 | -0.07 -0.08

w = 8 100 | -0.10 | -0.07 | -0.02 003 | 012 | -0.01 | -0.02 | -0.03 |} -0.05
200 | -0.06 | -0.03 0.04 0.09 | 0.20 | 0.04 | 0.03 | 0.01 | -0.01
g = 3 50 | -0.06 | -0.04 | 0.02 006 | 015 | 0.02 | 0.02 | 0.01 | -0.01
w = 6 100 | -0.04 | 0.00 0.06 0.12 | 0.24 | 0.07 | 0.07 | 0.04 | 0.02
200 | -0.02 | 0.03 0.11 018 | 032 | 012 | 0.11 | 0.07 | 0.05

Beta Model
g = 15 50 | 019 -0.45 | -0.09 | 004 | 007 | -0.09 | -0.09 | -0.12 -0.14
w = 1 100 | -0.17 | -0.13 -0.05 0.02 0.15 | -0.04 | -0.05 | -0.10 | -0.12
200 | -0.15 | -0.10 -0.01 0.08 024 | o.01 | -0.01 | -0.07 | -0.09
g = 2 50 | -021] 018 | -0.12 | 007 | 003 ]-0121-013]-0.15 -0.17
w = 1 100 | -0.19 | -0.15 | -0.08 | -0.02 | 0.10 | -0.07 | 0.09 | -0.12 | -0.14

200 | -0.17 | -0.12 | -0.03 0.04 | 019 | -002 | -0.04 | -0.09 | -0.11

= 25 50 | -0.23 | -0.20 | -0.15 | -0.10 | -0.01 | -0.14 | -0.15 | -0.17 .19

w = 1 100 | -0.21 | -0.18 -0.11 -0.05 | 0.06 | -0.20 | -0.11 | -0.15 | -0.17

200 | -0.19 | -0.14 | -0.06 002 | 0.16 | -005 | -0.06 | -0.11 | -0.13

= 3 50 |-025| -022 | -0.17 | -0.13 | -0.04 | -0.17 | -0.17 | -0.20 0.21

w = 1 100 | -022| 019 | -0.12 | 007 | 0.04 | -0.12 | -0.13 -0.16 | -0.18

200 | -0.20 | -0.15 | -0.08 | -0.01 | 0.13 | -0.07 | -0.08 | -0.13 -0.15
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Table (2.2): The simulated value of the relative mean error (RME) for each estimator by using the bandwidth
1
h=1066ns

p'i’fié}“ﬁﬁ’fell n | A0 ] 120 | /1300 | fus(O) | S0 | £(O) | KO | O | 7O
g = 1 50 | 036 | 0.34 0.31 028 | 022 | 030 | 031 | 032 | 033
w = 5 100 | 033 | 0.30 0.25 0.22 | 015 | 0.25 | 0.26 | 0.28 | 0.29

200 § 029 | 0.26 0.20 016 | 0.08 | 0.20 | 0.21 | 0.24 | 0.25
g = 15| 50 ;021 | 019 0.15 013 | 0.14 | 015 | 0.15 | 0.16 | 0.18
w = 3 100 | 017 | 0.14 0.10 010 | 018 [ 0.10 | 0.10 | 0.12 | 013

200 | 014 | 0.10 0.07 0.11 | 0.24 | 0.08 | 007 | 0.08 | 0.10
= 2 50 | 015 | 014 0.13 015 | 0.24 | 0.13 | 013 | 013 | 0.13

w = 25 100 | 0.12 0.10 0.11 0.16 0.29 | 0.12 0.11 0.10 0.10

200 | 0.09 | 0.08 0.13 021 | 038 | 014 | 0.12 | 0.08 | 0.08
p = 25 50 | 0.14 | 0.13 0.15 019 | 030 | 016 | 0.15 §{ 0.13 | 0.13
w = 2 100 | 0.11 0.10 0.15 0.21 037 | 0.15 | 0.314 | 011 | 0.10

200 | 0.08 | 0.09 0.17 026 | 046 | 0.14 | 0.13 | 0.11 | 0.09

Hazard Rate
Model

g = 15 50 | 043 | 0.42 0.40 038 | 035 | 039 | 040 | 041 | 041
w = 20 | 100 | 0.39 | 0.37 0.34 032 | 028 | 034 | 035 | 0.36 | 0.37

200 | 0.33 0.31 0.28 0.25 0.20 | 0.28 0.28 0.30 | 031
g = 2 50 0.29 0.28 0.25 0.23 0.21 | 0.25 0.25 0.26 | 0.27
w = 12 100 { 0.284 | 0.22 0.19 016 | 013 | 019 | 019 | 020 | 0.21

200 | 019 | 0.16 0.13 010 | 0.08 { 0.12 | 0.13 | 0.14 | 0.15

= 25 50 | 018 | 0.16 0.15 0.14 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15

w = 8 100 1 013 | 011 0.10 011 | 0.16 | 0.10 | 0.10 | 0.10 | 0.10

200 | 0.09 | 0.07 0.08 0.12 | 0.22 | 0.08 | 0.08 | 0.07 | 0.07

= 3 50 0.14 | 013 0.14 016 | 022 | 014 | 0.14 | 0.13 | 013

w = 6 100 | 0.10 | 0.09 0.12 016 | 027 | 0.12 | 0.13 | 0.10 | 0.10

200 | 0.07 | 0.07 0.13 020 | 034 | 012 | 013 | 010 | Q.08

Beta Mode!

B = 15 50 | 0.22 { 0.19 0.15 0.13 | 0.15 | 0.15 | 015 | 0.17 | 0.18

u = 1 100 | 0.19 0.15% 0.10 0.09 0.18 | 0.10 | 0.10 | 013 | 0.14
200 | 0.17 | 0.12 0.07 0.11 | 025 | 0.07 | 0.07 | 0.10 } 0.12

p = 2 50 | 024 | 0.21 0.17 014 | 013 | 017 | 0.17 | 0.19 | 0.20

w = 1 100 | 0.21 | 0.18 0.12 010 | 014 | 0.12 | 032 | 0.15 | 0.17

200 | 018 | 0.14 0.08 009 | 021|008 | 008 | 012 | 0.13

= 2.5 50 | 0.26 | 0.23 0.19 016 | 013 [ 019 | 019 | 0.21 | 0.22

w = 1 100 | 0.23 0.20 0.14 0.10 011 | 0.13 0.14 | 0.17 0.19

200 | 020 | 0.15 0.09 007 | 0.18 | 0.08 | 0.09 | 0.13 | 0.15
g = 3 50 027 | 0.25 0.20 017 | 013 | 0.20 | 0.20 | 0.22 | 0.24
w = 1 100 | 0.24 | 0.21 0.15 011 | 011 | 0.15 | 0.15 | 0.18 | 0.20

200 | 0.21 | 017 0.10 007 | 015 | 0.09 | 0.10 | 0.14 | 0.16
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Table (2.3): The simulated value of the relative bias (RB) for each estimator by using the bandwidth hy = 12k

Borentil [ 1 | £0) [ 4O | 4a® | fa® | 45O | 5O |FO | O | O | RO
g = 1 50 | -0.35 | -0.40 | -0.38 | -0.35 | -0.33 .0.28 | -0.35 | -0.35 | -0.36 | -0.37
w = 5 100 | -0.32 | -0.36 | -0.34 -0.31 -0.28 .0.22 | -0.31 | -0.31 | -0.32 | -0.33
2001 -0.29 | -0.33 | -0.31 -0.26 0.22 .0.15 | -0.26 | -0.26 | -0.28 | -0.30
ﬂ = 15 50 | -0.18 | -0.22 | -0.20 -0.16 -0.12 -0.06 | -0.16 | -0.16 | -0.17 | -0.18
w = 3 100 | -0.15 | -0.19 | -0.16 | -0.11 | -0.06 003 | -0.10 | -0.11 | -0.13 | -0.14
200 | -0.13 | -0.16 | -0.12 -0.06 0.00 0.11 | -0.05 | -0.06 | -0.09 | -0.11
ﬁ = 2 50 | -0.09 | -0.13 | -0.10 -0.05 -0.01 0.07 -0.05 | -0.05 | -0.06 | -0.08
w = 25 {100|-0081|-011 -0.07 0.01 0.04 0.15 0.00 | -0.01 | -0.03 | -0.05
200 | -0.06 | -0.08 | -0.04 0.04 0.10 0.24 0.05 | 0.04 0.00 | -0.02
§ = 25 |50 |-005]-008| -005 | 000 [ 005 | 014 | 000 | 000 -0.01 | -0.03
w = 2 [100]|-004]-006] 003 | 004 | 010 | 022 | 005 | 004 | 0.02 | 0.01
200 | 003 | 005 000 | 009 | 016 | 032 | 0.10 | 0.09 | 0.04 | 0.02
Hazard Rate
Model
g = 1.5 50 |-0.42 | -0.48 | -0.47 -0.45 -0.44 041 | -0.45 | -0.46 | -0.46 | -0.47
w = 20 |100}-038|-045]| -0.43 -0.41 -0.39 -0.36 | -0.41 | -0.41 | -0.42 | -043
200 | -0.33 | -0.40 | -0.38 -0.35 -0.33 -0.29 | 035 | -0.36 | -0.37 | 0.38
ﬁ = 2 50 | -0.26 | -0.33 | -0.32 -0.29 -0.28 -0.24 { -0.29 { -0.30 | -0.30 | -0.30
w = 12 100 | 022 | -0.29 | -0.27 -0.25 -0.22 -0.18 | -0.24 | -0.25 | -0.25 | -0.26
200 | -0.18 | -0.24 | -0.22 -0.19 -0.16 -0.11 | -0.19 | -0.19 | -0.20 | -0.21
B 2.5 50 | -0.13 | -0.19 | -0.17 -0.14 -0.12 -0.07 | -0.14 | -0.14 | -0.14 | -0.15
wr 8 100 | -0.10 | -0.15 | -0.13 -0.09 -0.06 0.00 -0.09 | -0.09 { -0.10 | -0.11
200 | -0.06 | 0,11 | -0.08 -0.04 0.00 0.08 -0.03 | -0.04 | -0.05 | -0.06
g = 3 50 | -0.06| 011 | -0.09 | -0.05 | -0.02 0.04 | -0.05 | -0.05 | -0.05 | -0.06
w = 6 100 | -0.04 | -0.08 | -0.05 0.00 0.04 0.12 0.00 | 0.00 | -0.01 | -0.02
200 | -0.02 | -0.05 | -0.01 0.05 0.10 0.20 0.05 | 0.05 | 0.03 0.01
Beta Model
g = 1.5 50 | -0.19 | -0.22 | -0.20 -0.16 -0.12 -0.04 | -0.15 | -0.15 | -0.17 | -0.18
w = 1 100 | -0.17 | -0.20 | -0.17 -0.11 -0.06 0.04 -0.11 ) -0.11 | -0.14 | -0.15
2001 -0.15 | -0.18 | -0.14 -0.07 -0.01 0.12 -0.06 | -0.07 | -0.11 | -0.13
B = 2 50 | -0.21 | -0.25 | -0.23 -0.19 -0.15 -008 | -0.18 | -0.19 | -0.20 | -0.21
w = 1 100 | -0.19 | -0.23 | -D0.20 -0.15 -0.10 001 | -0.14 | -0.15 | -0.17 | -0.18
200 | -0.17 | -0.20 | -0.16 -0.10 -0.04 0.08 -0.09 j -0.10 ) 0.13 } -0.15
ﬁ = 25 50 | -0.23 | -0.27 | -0.25 -0.21 -0.18 -0.11 | -021 | -0.21 | -0.22 | -0.24
w = | 10¢ | -0.21 | -0.25 | -0.22 -0.17 -0.13 004 | -0.17 | -0.17 | 0.20 | -0.21
200 | -0.19 | -0.22 | -0.18 -0.12 -0.07 0.04 -0.11 | -0.12 | -0.15 | -0.17
g = 3 50 | -0.25 | -0.29 | -0.27 -0.23 -0.20 014 | 023 ) 0231 -025 | -0.26
w = 1 1001-0.22 | -026| -0.23 | -0.19 | -0.14 -0.06 | -0.18 | -0.19 | -0.21 | -0.22
200 -0.20 | -0.23 { -0.20 | -0.14 -0.09 0.02 0.13 | -0.14 | -0.17 | -0.19
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Table (2.4): The simulated value of the relative mean error (RME) for each estimator by using the bandwidth
hl = 12h

p’f,’;‘f;"ﬁ,}‘;ﬁ[ n | 7@ | 710 | 110 | 430) | As©@ | 20 | @ | F© | O ] /@
g = t 50 | 0.36 | 0.40 0.39 0.36 0.34 0.30 0.36 | 036 | Q.37 0.38
w = 5 100 | 0.33 | 0.37 0.35 0.31 0.29 0.23 031 | 032 | 033 0.34
200 | 0.29 | 0.33 031 0.27 0.23 0.16 026 | 027 | 0.2¢ | 030
g = 1.5 150 | 021 | 024 | 022 0.19 0,16 0.13 019 | 019 | 020 | 021
w = 3 100 | 0.17 | 0.20 0.18 0.13 0.11 0.10 0.13 | 0.13 | 015 | 0.16
200 | 0.14 | 0.17 .14 0.09 0.07 0.13 008 | 0.09 | 011 0.12
p = 2 50 | 015 | 017 | Q.15 0.13 0.12 0.14 013 | 012 | 013 | 0.14
w = 25 |100]| 012 ] 0.13 0.11 0.09 0.10 0.18 0.09 | 0.08 | 0.05 | 0.10
200 | 0.0 | 0.10 0.08 0.08 0.13 0.25 0.08 | 0.08 | 0.07 0.07
g = 25 50 | 0.14 | 0.14 0.12 0.12 0.13 0.19 012 | 011 | 0.12 0.12
w = 2 100 | 0.11 | 0.11 0.09 0.10 0.14 0.24 0.10 | 010 | 0.09 0.09
200 | 0.08 | 0.08 0.07 0.11 0.18 0.33 0.10 | 0.09 | 0.08 | 007
Hazard Rate
Model
g = 1.5 | 50 | 0.43 | 0.49 0.48 0.47 0.45 0.43 046 | 047 | 047 0.48
w = 20 (100039 | 045 044 0.42 0.40 0.37 042 | 042 | 043 | 043
200 | 0.33 | 0.40 0.38 0.36 0.34 0.30 036 | 036 | 037 0.38
g = 2 50 | 0.29 | 0.35 0.34 0.32 0.31 0.28 032 1 032 1 033 0.33
w = 12 |100| 024 | 030 | 0.29 0.26 0.24 0.20 0.26 | 0.26 | 0.27 | 0.27

200 019 | 0.25 | 023 0.20 0.18 013 | 020 | 020 | 0.21 | 0.22

g = 25 |50 0.18 { 0.22 | 0.21 0.19 0.18 0.16 0.19 | 019 | 019 | 0.20
w = 8 100 0.13 | 0.17 | 0.15 0.13 0.11 0.10 013 | 0.13 | 013 | 0.14

200 009 | 013 | 0.11 0.08 0.07 0.11 0.08 | 0.08 | 0.08 | 0.09
g = 3 50 | 0.14 | 0.16 | 0.15 0.14 0.13 0.15 0.13 | 0.13 | 0.13 | 0.14
w = 6 100 | 0.10 | 011 | 0.10 0.09 0.10 0.16 0.09 | 0.09 | 0.09 | 0.09

200 | 0.07 | 0.07 | 0.06 0.08 0.12 0.22 0.08 | 0.08 | 0.07 | 0.06

Beta Model

g = 1.5 | 50 | 0.22 | 0.25 | 0.22 0.19 0.16 0.12 019 | 0.19 | 0.20 | 0.21
w = 1 100 019 | 0.21 | 0.18 0.14 0.10 0.09 0.13 | 0.13 | 0.16 | 0.17

200 | 0.17 | .19 | 0.15 0.09 0.07 0.14 009 | 009 | 012 | 0.14
g = 2 50 10241027 | 025 0.21 0.18 0.13 021 | 021 | 0.22 | 023
w = 1 100 021 | 0.24 | 0.21 0.17 0.13 0.08 0.16 | 0.16 | 0.19 | 0.20

200 | 0.18 j 0.21 | 0.17 0.12 0.08 0.10 0.11 | 0.12 |} 015 | 0.16

g = 25 |30 026 | 0.29 | 0.27 0.24 0.21 0.16 023 | 0.23 | 0.25 | 0.26
w = 1 100 023 | 026 | 023 0.19 0.15 0.09 0.19 | 0.19 | 0.21 | 0.22

200 | 0.20 | D.23 019 0.13 0.09 0.08 013 | 014 { 017 | 0.18

g = 3 50 | 0.27 | 031 | 0.29 0.25 0.23 017 | 0.25 | 0.25 | 0.26 | 0.28
w = 1 100 | 024 | 0.27 | 0.25 0.20 0.17 0.10 | 020 | 020 | 022 | 0.23

200} 021 | .24 | 0.21 0.15 011 0.07 0.15 | 0.1 | 0.18 | 0.20
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Table (2.5): The simulated value of the relative bias (RB) for each estimator by using the bandwidth h, = 0.8h

;’;‘,’;’,“ﬁ‘;ﬁl n [ FO) | A©@ | 1@ | A3 | As@ | £ | 7@ | 5O | £©) | £©)
g = 1 50 |-035]-030| -0.27 | -0.21 | -0.16 -0.07 | -0.20 | -0.21 | -0.24 | -0.26
w = 5 100 | -0.32 | -0.27 | -0.23 -0.16 -D.11 0.01 016 | 017 | -0.21 | 0.23
200 | -0.29 | -0.24 | -0.20 | -0.12 | -0.05 009 | -0.10 | -0.12 | -0.17 | -0.19
p = 15 50 | -0.18 | -0.14 | -0.09 | -0.02 0.05 0.19 | -0.01 | -0.02 | -0.06 | -0.08
au = 3 100 | -0.15 | -0.11 | -0.06 0.04 0.12 0.29 005 | 0.03 | -0.03 | -0.05
200 | -0.13 | -0.09 | -0.03 0.09 0.19 0.39 0.11 | 0.08 0.00 | -0.03
B = 2 50 | -0.09 | -0.06 | -0.01 0.08 0.17 0.34 0.10 | 0.08 0.03 0.00
w = 25 [100]-008|-005] 001 0.13 0.23 0.43 0.14 | Q.12 0.05 0.02
200 | -0.06 | -0.04 | 004 0.17 0.29 0.54 0.20 | 0.16 0.07 0.04
g = 25 50 | -0.05 | -0.03 | 0.03 0.13 0.22 0.41 0.14 | 0.13 | 007 | 0.04
w = 2 100 | -0.04 | -0.03 0.04 0.17 0.28 0.51 0.19 | 0.16 0.08 0.05
200 | -0.03|-0.02{ 006 0.22 0.35 0.62 025 | 0.21 | 0.10 | 0.06
Hazard Rate
Model
B = 1.5 50 | -0.42 | -0.33 | -0.31 -0.28 -0.25 020 { 0281|0281 -030} -031
w = 20 |100|-038]|-0.29 | -0.27 -0.23 -0.20 013 | -023 | -0.24 | -0.26 | -0.26
200 | -0.33 | -0.24 | -0.21 -0.16 -0.12 005 | -0.16 | -0.17 | -0.20 | -0.21
ﬁ = 2 50 | -0.26 ) -0.18 | -0.15 -0.11 -0.07 0.00 -0.11 | -0.11 | -0.13 | -0.14
w = 12 |100(-022|-014| 011 -0.06 | -0.02 0.07 -0.06 | -0.07 | -0.08 | -0.10
200 | -0.18 | -0.11 ) -0.07 -0.01 0.05 0.15 0.00 | -0.01 | -0.04 | -0.06
g = 2.5 50 {-ga13 | -007 | -0.03 0.03 0.08 0.19 0.03 | 003 0.01 | -0.01
w = 8 100 | -0.20 | -0.05 | 0.00 0.07 0.13 0.26 0.08 | 0.07 | 0.04 | 0.02
200 | -0.06 | -0.02 | 0.03 0.12 0.19 0.35 013 | 0.11 0.07 0.04
I 3 50 | -0.06 | -0.03| 0.02 0.09 0.16 0.30 0.10 | 0.10 | 0.06 | 0.04
w = 6 100 | -0.04 | -0.01 | 0.04 0.13 0.22 0.39 0.15 | 0.13 | 0.09 0.06
200  -0.02 | 0.00 0.06 0.18 0.28 0.48 0.19 0.17 0.11 0.07
Beta Model
g = 1.5 50 | -0.19 | -0.15 | -0.10 -0.02 0.06 021 | -0.01 | -0.02 | -0.07 | -0.10
w = 1 100 | -0.17 | -0.14 | -0.08 0.02 0.11 0.30 0.04 | 0.02 | -0.05 | -0.08
200 | -0.15 | -0.12 | -0.05 0.07 0.18 0.40 0.09 | 0.06 | -0.03 | -0.06
B = 2 50 | -0.21| -0.18 | -0.13 -0.05 0.02 0.17 0.04 | -0.05 | -0.10 | 012
w = 1 100 | -0.19 | -0.16 | -0.10 -0.01 0.08 0.25 0.01 | -0.01 | -0.08 | -0.10
200 | -0.17 | -0.14 | -0.07 0.04 0.15 0.35 0.07 | 0.03 | -0.05 | -0.07
g = 25|50 -0.23 ] 019 | -0.15 | -0.07 0.01 013 | -0.06 | -0.08 | -0.12 | -0.14
w = 1 100 | -0.21 | -0.18 | -0.13 -0.03 0.05 0.21 -0.02 | -0.04 | -0.10 | -0.12
200 | -0.19 | -0.15 | -0.09 0.02 0.12 0.31 0.c4 0.01 | -0.06 | -0.09
g = 3 50 | -025-021! 017 | Q.09 | -0.03 0.10 | -0.08 | -0.10 | -0.14 | -0.16
w = 1 100 | -0.22 | -0.18 | -0.13 -0.05 0.03 0.19 | -0.03 | -0.05 | -0.11 | -0.13
200 | -0.20 | -0.16 | -0.10 0.00 0.10 0.28 0.02 | -0.01} -0.08 | -0.10
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Table (2.6): The simulated value of the relative mean error (RME) for each estimator by using the bandwidth

h2=0-8h
e Model | " | F@ [ A | A | fa®) | fi5(® | £(0) | O INOISAOIEAQ
ﬁ = | 50 | 0.36 | 0.32 0.29 0.24 0.20 0.14 023 | 024 | 027 | 0.28
w = 5 100 | 0.33 | 0.28 0.25 0.19 0.14 0.10 0.18 | 0.19 0.23 0.24
200 | 0.29 | 0.25 0.21 0.13 0.08 0.12 012 | 014 | 0.19 0.20
ﬁ = 15 50 | .21 | 0.19 0.16 0.14 0.16 0.25 0.14 | 0.14 | 0.15 0.16
®w = 3 100 | 0.17 | 0.15 0.12 0.12 0.17 0.322 0.13 | 0.12 0.11 0.12
200 0.14 | 0.12 0.09 0.12 0.21 0.40 0.14 0.11 0.08 0.09
B = 2 50 | 0.15 | 0.16 0.15 0.18 0.23 0.38 0.19 | 0.18 | 0.15 | 0.15
w = 25 |100] 012 | 0.12 0.11 0.17 0.26 0.45 019 | 0.17 | 0.12 0.12
200 0.09 | 0.10 0.10 0.20 0.31 0.55 0.22 0.19 0.11 0.10
g = 2.5 50 | 0.14 | 0.16 0.16 0.21 0.28 0.45 022 1 021 017 | 0.16
w = 2 100 | 0.11 | 0.12 0.13 0.21 0.31 0.53 023 | 0.21 0.15 0.13
200 | 0.08 | 0.09 0.12 0.24 0.37 0.64 0.27 | 0.23 0.14 011
Hazard Rate
Model
B = 1.5 50 | 043 | 035 0.34 0.31 0.28 0.24 0.30 | 031 0.33 0.33
w = 20 100 | 0.3%9 7 0.31 0.28 0.25 0.22 0.17 n.24 0.25 0.27 0.28
2001 0.33 | 0.25 0.22 0.18 0.14 0.09 017 | 0.18 0.21 0.22
ﬁ = 2 50 | 0.29 | 0.23 0.21 0.19 0.17 0.17 0.18 0.19 0.19 0.20
w = 12 ji100) 0.28 | 017 0.15 0.12 011 0.14 011 0.12 0.13 0.14
200 | 0.19 | 0.13 0.10 0.07 0.09 0.17 0.07 | 0.07 | 0.08 0.09
g = 2.5 50 | 0.18 | 0.15 0.14 0.15 0.13 0.26 0.15 | 015 { 0.14 0.14
Hw = 3 100 | 0.13 | 0.11 0.10 0.13 0.18 0.29 0.13 | 0.13 0.11 0.10
200 | 0.09 | 0.08 0.08 0.14 0.21 0.36 015 | 0.14 | 0.10 0.09
g = 3 50 | 014 | Q.14 0.15 0.18 0.23 0.35 0.19 | 0.18 0.16 0.15
w = 6 1001 0.10 § 0.10 0.11 0.18 0.25 0.41 0.19 | 0.18 0.14 0.12
200 ] 0.07 | 0.08 0.10 0.20 0.29 0.49 021 | 0.19 0.13 011
Beta Model
ﬁ’ = 15 50 | 0.22 | 0.20 0.17 0.14 0.16 0.26 0.14 D.14 0.16 0.17
w = 1 100 | 0.19 | 0.17 0.13 0.11 0.16 0.32 012 | 011 | 0.11 | 0.13
200 ] 0.17 | 0.15 0.10 0.11 0.20 041 0.13 0.10 | 0.09 0.10
g = 2 50 | 0.24 | 0.22 0.1¢9 0.15 0.15 0.23 0.15 | 0.15 0.17 0.18
w = 1 100 | 0.21 | 0.19 0.15 0.11 0.14 0.28 0.11 | 0.11 0.13 0.15
200 0.18 | 0.16 0.11 0.10 0.17 0.37 0.11 0.09 0.10 0.11
B = 15 50 | 0.26 | 0.23 0.20 0.16 0.14 0.20 0.15 0.16 0.18 0.19
w = 1 100 | 0.23 | 0.20 0.16 0.11 0.12 0.24 0.11 | 0.11 | 0.14 0.16
200 | 0.20 | 0.17 0.12 0.09 0.15 0.33 0.09 0.08 0.10 012
ﬁ = 3 50 | 0.27 | 0.24 0.21 0.16 0.14 0.18 0.16 0.16 0.19 0.20
w = 1 100 | 0.24 | 0.21 0.17 0.11 0.11 0.22 0.11 | 0.12 | 0.15 0.16
200 | 0.21 | 0.18 0.13 0.08 0.13 0.30 0.08 | 0.08 0.11 0.13
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'I:able (2.7): The relative bias (RB),
fr@) withm=2,4,7,12, 20, 50, 100, 200, 1000 an

relative mean error (RME) and efficiency (EFF) of the proposed estimator
d 10000 when the data are simulated from Exponential

Power (EP) Model.

;’;";"ﬁ‘;ﬁl m 1 2 4 5 | 12§ 20 | s0 | 100 [ 200 | 1000 | 10000
= 5o | Re | 0354|0282 | 0289 | 0304 | 0318 | 0329 | 0341 | -0.346 | -0.350 | -0.353 | -0.354
§ - 10 | AME | 0366 | 0299 | 0305 | 0320 | 0333 | 0.342 [ 0354 | 0359 | 0362 | 0.365 | 0.366
w = 50| EFF 224 | 1.195 | 1.145 | 1100 | 1.068 | 1.034 | 1.019 | 1.011 | 1.003 | 1.000
0o | Re | 0319 | 0231 | -0242 | -0.261 | -0.278 | 0.291 | -0.305 | -0.311 | 0.314 | -0318 | 0319
p - 10 [ AME | 0327 | 0284 | 0253 | 0272 | 0288 | 0300 [ 0313 | 0319 | 0322 | 0.326 | 0.327
w = 50| EFF 1341 | 1.290 | 1201 | 1134 | 1.090 | 1.043 | 1.025 | 1.014 | 1.003 | 1.000
200 | fB | 0.288 | 0.183 | -0.198 | 0222 | -0.242 | 0.256 | -0.272 | -0.279 | 0.283 | -0.287 | -0.288
g — 10 | RWE | 0293 | 0193 | 0205 | 0230 | 0249 | 0263 | 0.278 | 0285 | 0288 | 0292 | 0299
w = 50| EFF 1522 | 1420 | 1.277 | 1479 | 1.117 | 1.055 | 1.031 | 1.017 | 1.004 | 1.001
50 | re | 0172 | 0.064 | -0073 | -0.097 | 0.119 | -0.134 | 0,153 | -0.161 | 0.166 | -0.170 | 0.171
5 - 15| RME | 0203 | 0132 | 036 | 0150 | 0.164 | 0.075 | 0.189 | 0.195 | 0499 | 0.202 | 0.203
w = 30 EFF 1.541 1.496 | 1.360 | 1.242 | 1.162 1.077 1.043 1.024 | 1.006 1.001
— 00 | R | .0129 | -0018 | 0.034 | -0.064 | -0.090 | -0.108 | -0.129 | -0.137 | -0.143 | -0.147 | 0.149
B = 1.5 RME 0.173 0.057 | 0.100 | 0.113 | 0.128 0.141 0.157 | 0.164 | 0.188 | 0.172 0.173
w = 30| EFF 1797 | 1741 | 1.538 | 1351 | 1.227 | 1.104 | 1.058 | 1.032 | 1.008 | 1.001
500 | e 10125 | 0030 | 0.008 | 0:029 | -0.059 | 0.080 [ -0.103 | -0.113 | 0.118 | -0.123 | -0.125
5 = 15| RmE | 014z | 0.077 | 0071 | 0076 | 0.091 [ 0106 | 0.124 | 0131 | 0136 | 0140 | 0.142
w = 30 EFF 1.845 2.002 | 1.872 | 1.557 | 1.344 1.148 | 1.080 1.033 1.011 1.001
—— 50 | s ].0097 | 0035 ] 0.024 | 0.006 | -0.033 | 0.053 | -0.075 | -0.084 | -0.090 | -0.095 | -0.097
g - 20 | AME | 0158 | 0438 | 0134 | 0131 | 0134 | 0139 | 048 | 0.152 | 055 | 0.157 | 0.158
w = 25| EFF 1150 | 1431 | 1.208 | 182 | 1.438 | 1072 | 1041 | 1.023 | 1.005 | 1.001
100 | Rs |-0072 | 0.086 | 0.067 | 0.030 | -0.002 { -0.024 [ -0.049 | -0.055 | -0.065 | -0.070 | -0.072
B = 20 RME 0.121 0.134 | 0.122 | 0.106 | 0.101 0.103 0.110 | 0.115 | 0.117 | 0.120 0.121
w = 25| EFF 090z | 0.991 | 2.147 | 1.208 | 1.180 | 1.100 | 1058 | 1.033 | 1008 | 1001
= 200 e | -0.061 | 0.126 | 0,058 | 0.052 | 0.016 | -0.009 [ -0.036 [ -0.047 | 0.053 | -0.059 | -0.061
5 = 20| RME | 0094 | 0147 | 0123 | 0051 | 0.076 | 0074 | 0.081 | 0.086 | 0.090 | 0093 | 0,094
w = 25| EFF 0639 | 0768 | 1.032 | 1239 | 1.270 | 1161 | 1092 | 1052 | 1013 | 1001
— 5o | 75 ] -0053 | 0094 | 0.082 | 0.048 | 0.018 | -0.004 | -0.029 | -0.039 | -0.045 | -0.051 | -0.053
g - 25| RME | 0438 | 0.165 | 0.157 | 0441 | 0.133 | 0131 | 0133 | 0135 | 0.136 | 0138 | 0138
w = 20| EFF 0835 | 0.831 | 0.979 | 1.038 | 1.054 | 1.041 | 1.026 | 1.015 | 1.003 | 1.000
100 | R6 | 0041 | 0.136 | 0413 | 0.071 | 0.036 | 0.012 | -0.05 | -0.026 | -0.033 | -0.039 | -0.040
ﬁ = 25 RME 0.105 | 0.170 | 0.152 § 0.123 | 0.106 0.100 0.100 | 0.101 | 0.103 0.105 0.105
w = 20| EFF 0619 | 0.693 | 0.854 | 0.989 | 1051 | 1.056 | 1038 | 1.022 | 1.006 | 1.001
00 | R | 0032 | 0175 | 0.142 | 0.091 | 0.051 | 0.024 | -0.006 [ -0.017 | 0.024 | -0.030 | -0.032
g = 25| RWE | 0084 | 0154 | 0164 | 0122 | 0095 | 0.083 | 0079 | 0.080 | 0.081 | 0.083 | 0.034
w = 20| EFF 0432 | 0510 | 0.686 | 0.881 | 1.011 | 1.065 | 1.049 | 1.030 | 1.008 | 1.001
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Table (2.8): The relative bias (RB), re

ative mean error (RME) and efficiency (EFF) of the proposed estimator

F2(0) with m =2, 4,7, 12, 20, 50, 100, 200, 1000 and 10000 when the data are simulated from Hazard-Rate
(HR) Model.

H”&‘Lﬁm m 1 2 4 7 12 | 20 so | 100 | 200 | 1000 | 10000
= 50 | RB |-0417 | -0377 | -0.382 | -0.390 | -0.397 | -0.403 | -0.409 | -0.412 | -0.414 | -0.417 | -0417
g = 15 | RME | 0432 | 0395 | 0309 | 0.407 | 0414 | 0419 | 0425 | 0427 | 0.429 | 0431 0.432
w = 200 | EFF 1094 | 1.082 | 1.061 | 1.044 | 1032 | 1.017 | 1.011 | 1.006 | 1.002 | 1.000
= 100 | RB | 0374 | 0325 | -0.332 | -0.342 | -0.350 | 0357 | -0.364 | -0.368 | -0.370 | -0.373 | 0374
g = 15 | RME | 0382 | 0.336 | 0342 | 0352 | 0.360 | 0.366 | 0374 | 0377 | 0379 0381 | 0.382
w = 200 EFF 1137 | 1116 | 1.086 | 1.062 | 1.044 | 1.023 | 1.014 | 1.008 | 1.002 | 1.000
= 200 | #B | 0324 | 0.266 | -0.274 | -0.286 | -0.296 [ -0.304 | -0.313 | 0.318 | -0.320 | -0.323 | -0324
g = LS | RME | 0328 | 0272 | 0280 | 0292 | 0.302 | 0310 | 0319 | 0323 } 0325 | 0.328 0.329
w = 200 [ EFF 1208 | 1.174 | 1.126 | 1.089 | 1.063 | 1.033 | 1.020 | 1.012 | 1.003 | 1.000
50 | R |.0269 | 0.213 | 0.215 | -0.226 | -0.236 | -0.245 | -0.256 | -0.261 | -0.264 | -0.268 | -0.269
g = 20 | RME | 0295 | 0253 | 0.255 | 0.263 | 0.270 | 0.277 | 0285 | 0289 | 0262 | 0299 0.296
w = 120 | EFF 1171 | 1.161 | 1127 | 1.095 | 1.069 | 1.037 | 1.022 | 1.033 | 1.003 | 1.000
= 100 | RB | -0226 | 0.159 | -0.162 | -0.175 | -0.188 | 0.198 | -0.211 | 0217 | -0.221 | -0.224 | -0.226
3 = 20 | AME | 0242 | 0185 | 0189 | 0200 | 0.210 | 0.218 | 0.229 | 0.235 | 0238 | 0241 0.242
w = 120 | EFF 1302 | 1.280 | 1.214 | 1.155 | 1.110 | 1.056 | 1.033 | 1.019 | 1.005 | 1.001
—— 200 | Re | -0.79 | 0.098 | -0.103 | -0.120 | -0.135 | -0.147 | -0.163 | -0.169 | -0.174 | 0178 | -0.179
g = 20 | RME | 091 | 0123 [ 0128 | 0.140 | 0153 | 0.163 | 0.177 | 0.183 | 0.186 | 0.1 0.191
w = 120 EFF 1553 | 1.500 | 1366 | 1.252 | 1.172 | 1.084 | 1.048 | 1.027 | 1.007 | 1.001
= 50 | RB | -0.126-0.041] 0.042 | -0.050 [ -0.076 | -0.090 | -0.107 | -0.115 | -0.120 | -0.124 | -0125
g = 25 [ RME | 0173 | 0.150 | 0150 | 0152 | 0.456 | 0161 | 0.169 | 0173 | 0.175 0.178 | 0.179
w = 80 | EFF 1189 | 1.192 | 1.180 | 1.143 | 1.113 | 1.061 | 1.036 | 1.020 | 1.005 | 1.001
100 | "B | .0097 | 0.003 | 0.000 | -0.021 | -0.042 | -0.058 | -0.077 | -0.086 | 0.091 | -0.096 } -0.097
g = 25 | RME | 0130 | 0.099 | 0.097 | 0057 | 0.101 | 0.107 | 9.118 | 0123 ) 0126 | 0429 0.130
w = 80 | EFF 1320 | 1.339 | 1.349 | 1.291 | 1.215 | 1.109 | 1.062 | 1.035 | 1.009 | 1.001
= 200 | ®e |.-0067 | 0055 | 0.048 | 0.021 [ -0.005 [ -0.023 | -0.046 | -0.055 | -0.060 | -0.066 | -0.067
g = 25 | RmE | 0094 | 0.092 | 0087 | 0.073 | 0.069 | 0.072 | 0.081 | 0.086 | 0.089 | 0.093 | 0.094
w = 80 | EFF 7021 | 1.079 | 1.278 | 1.363 | 1.312 | 1.166 | 1.094 | 1.052 | 1.013 | 1.002
= 50 | RB | -0.059] 0.051 | 0.050 | 0,027 | 0.003 | -0.015 | -0.037 | -0.046 | -0.052 | -0.057 | -0.059
p = 30 | Awe | 0135 | 0147 [ 0144 [ 0133 | 0128 | 0127 | 0129 | 0.131 | 0.133 | 0.134 | 0.135
w = 60 | EFF 0.919 | 0.936 | 1.011 | 1.056 | 1.064 | 1.045 | 1.028 | 1.016 | 1.004 | 1.000
= 100 | R | -0.0a0 ]| 0.093 | 0.086 | 0.056 | 0.028 | 0.007 | -0.017 | -0.027 | -0.033 | 0.038 | -0.040
g = 30 | RME | 0100 | 0.138 | 0132 | 0.112 | 0.100 | 0.005 | 0.095 | 0.096 | 0.098 | 0.099 | 0100
w = 60 | EFF 0722 | 0.759 | 0.893 | 1.006 | 1.057 | 1.058 | 1.038 | 1.023 | 1.006 | 1.001
= 200 | RB | -0018 | 0142 | 0128 | 0.030 | 0.058 § 0.034 | 0,007 | -0.003 | -0.010 | -0.016 | -0.017
g - 30 | AvE | 006 | 0160 | 0.147 | 0.110 | 0.090 | 0.076 | 0.068 | 0.067 | 0.067 | 0.068 | 0.069
w = 60 | EFF 0429 | 0.468 | 0.600 | 0.766 | 0.503 | 1.015 | 1.025 | 1.019 | 1.006 | 1.001
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Table (2.9): The relative bias (RB), relative mean error (RME) and efficiency (EFF) of the proposed estimator
fr(0) with m =2, 4,7, 12, 20, 50, 100, 200, 1000 and 10000 when the data are simulated from Beta (BE)

Medel.

Beta Model m 1 2 4 7 12 20 50 100 200 1000 | 10000
n = 50 RB 0.191 | -0.073 | -0.086 | -0.113 | -0.136 -0.153 | -0.172 | -0.180 | -0.185 | -0.189 -0.191
g = 13 aME | 0.221 | ¢.138 | 0.144 | 0,161 | 0.178 0191 | 0.206 | 0.212 | 0.216 | 0220 | G221
w = 10 EFF 1.602 | 1.531 | 1.368 | 1.241 | 1.158 | 1.073 1.040 | 1.022 | 1.005 1.001
n = 100 RB 0.165 | -0.024 | -0.043 | -0.076 | -0.104 | -0.123 | -0.145 -0.154 | -0.159 | -0.164 | -0.165
B = 1.5 rvE | 0.186 | 0.092 | 0.099 | 0.117 0.136 | 0.151 | 0.169 | 0.176 | 0.180 0.184 0.186
w = L0 EFF 2.010 | 2.884 | 1591 | 1366 | 1.231 | 1.103 1.056 | 1.031 | 1.007 1.001
n = 200 RB -0.149 { 0.018 | -0.00% | -0.050 | -0.081 -0.103 | -0.127 | -0.136 | -0.142 | -0.147 -0.148
g = 15 RME | 0.164 | 0.075 | 0.073 | 0.087 0.108 | 0.125 | 0.145 | 0.153 | 0.138 0.162 | 0164
w = 10 EFF 2.187 | 2.249 | 1.877 | 1.516 | 1.311 | 1132 1.071 | 1.039 | 1.009 1.001
n = 50 RB .0.212 | -0.103 | -0.114 | -0.139 | -0.160 | -0.176 -0.194 | -0.202 | -0.206 | -0.210 | -D.212
g = 20 RME | 0.238 | 0.153 | 0.160 | 0.179 | 0.195 | 0.208 0.223 | ©.229 | 0.233 | 0.237 0.238
w = 10 EFF 1555 | 1.484 | 1.331 | 1,216 | 1.142 | 1.067 1,037 | 1.021 | 1.005 1.001
n = 100 RB .0.191 | -0.060 | -0.077 | -0.108 | -0.133 | -0.151 -0.171 | -0.180 | -0.185 | -0.189 | -0.191
g = 20 RME 0.202 | 0.108 | 0.118 | 0.140 | 0.160 | 0.175 0.192 | 0.199 | 0.204 | 0.208 0.209
w = 10 EFF 1936 | 1.770 | 1.495 [ 1.308 | 1.196 | 1.089 1.049 | 1.027 | 1.007 1.001
n = 200 RB 0.169 | -0.013 | -0.038 | -0.076 | -0.105 | -0.126 | -0.148 -0.157 | -0.162 | -0.167 | -0.169
g = 20 RME | 0.182 | 0.072 | 0.080 | 0.103 | 0.126 | 0.143 0.163 | 0.171 | 0.176 | 0.180 | 0.181
w = L0 EFF 2539 | 2.283 | 1771 | 1.445 | 1.270 | 1.116 1.063 | 1.034 | 1008 1.001
n = 50 RB .0.236 | -0.133 | -0.143 | -0.166 | -0.187 | -0.202 | -0.219 -0.226 | -0.230 | -0.235 | 0.236
g = 25 RME | 0.259 | 0.174 | 0.181 | 0.200 | 0.216 0.229 | 0.244 | 0.250 | 0.254 | 0.257 0.258
w = 10 EFF 1.488 | 1.427 | 1.295 | 1.195 | 1.129 | 1.061 1.034 | 1.019 | 1.004 1.000
n = 100 RB -0.216 | -0.092 | -0.108 | -0.137 | -0.161 | -0.178 | -0.198 -0.205 | -0.210 | -0.215 | -0.216
g = 23 RME | 0.232 | 0.120 | 6.140 | 0.164 | 0.184 | 0.199 0.216 | 0.223 | 0.227 | 0.231 0.232
w = 10 EFF 1.804 | 1.653 | 1.419 | 1.263 | 1.169 | 1.077 | 1.042 1.023 | 1.006 1.001
n = 200 RB 0184 | -0.036 { -0.059 | -0.095 | -0.123 | -0.142 -0.163 | -0.172 | -0.177 | -0.182 | -0.183
g = 15 RME | 0.194 | 0.076 | 0.089 | 0.115 | 0.139 | 0.156 0.176 | 0.184 | 0.188 { 0.193 | 0.194
w = 10 EFF 2560 | 2.181 | 1.684 | 1.397 | 1.243 | 1.106 | 1.057 1.031 | 1.008 1.001
n = 50 RB -0.25¢ | -0.157 | -0.167 | -0.190 | -0.209 | -0.223 | -0.239 -0.245 | -0.250 | -0.254 | -0.256
g = 30 RME | 0.276 | 0.191 | 0.199 | 0.218 | 0.235 | 0.247 0.261 | 0.267 | 0.271 | 0.275 0.276
w = 10 EFF 1.444 | 1.386 | 1.266 | 1.176 | 1.117 | 1.055 | 1.031 1.017 | 1.004 1.000
n = 100 RB 0227 | -0.103 | -0.118 | -0.146 | -0.169 | -0.185 0.204 | 0.212 | -0.216 | -0.220 | 0.222
g = 30 RME 0235 | ©.132 | 0.144 | 0.167 1 0.187 | 0.202 0.219 | 0.226 | 0.230 | 0.234 0.235
w = 10 EFF 1781 | 1.636 | 1.408 | 1.256 | 1164 | 1.075 | 1.041 1.023 | 1.006 1.001
n = 200 RB .0.198 | -0.057 | -0.079 | -0.113 | -0.140 | -0.158 | -0.179 -0.187 | -0.192 | -0.197 | -0.198
g = 30 ave | 0.208 | 0.088 | 0103 | 0.130 | 0.154 0.171 | 0.190 | 0.198 | 0.202 | 0.207 0.208
w = 10 EFF 2367 | 2.019 | 1.597 | 1.352 | 1.218 | 1.096 | 1.053 1.029 | 1.007 1.001
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Table (2.10): The simulated value of the relative mean error (RME) and the relative bias (RB) for estimators
!

F-,(0) and £,(0) by using the bandwidth h = 1.06 &n’s,

N RME  (RB) RME (RB) RME (RB)
EP Model £0) £ (©) fof®)

B = 1 50 036 (-0.35) | 1.00 (-1.00) | 0.85 { -0.85)
w = 5 1100 033 (-0.32) | 100 {-1.00) | 091 {-0.91)
200 0.29 (-0.29) 1.00 (-1.00) | 0.96 { -0.96)

B = 15| 50 021 {-0.18) { 1.00 (-100) | 0.79 (-0.79)
w = 3 100 0.17 (-0.15} 1.00 (-1.00) | 0.88 (-0.88)
200 0.14 (-0.13) 1.00 (-1.00) | 0.94 { -0.94)

B = 2 50 0.15 (-0.09) 1.00 (-1.00) | 0.75 { -0.75)
eTig = 2.5 ! 100 0.12 (-0.08) 1.00 (-1.00) | 0.86 (-0.86)
200 0.09 (-0.06) 1.00 (-1.00) { 093 (-0.93 )

= 251 50 0.14 (-0.05) 1.00 (-1.00) | 073 ({-0.73)

w = 2 10| o011 (-004) | 100 (-1.00) (084 (-0.84)
200 0.08 (-0.03) 1.00 {-1.00) | 0.93 (-0.93 }

Hazard Rate
Model

B = 1.5} 50 0.43 (-042) [ 100 (-1.00) | 0.89 (-0.89 )
w = 20 | 1c0 0.39 {-0.38) 1.00 (-1.00) | 0.4 (-0.94 )
200 0.33 (-0.33) 1.00 (-1.00) | 0.97 {(-0.97)

B = 2 50 029 (-026) | 100 {-1.00) | 085 (-0.85 )
w = 12 [100| 024 (-022) | 100 (-1.00) | 0.92 (-0.92)
200 Q.19 (-0.18) 1.00 (-1.00) | 096 (-0.96 )

g = 25| 50 | 0.18 (-0.13) | 100 (-1.00} | 0.81 (-0.81)
1w = 8 100 0.13 ({-0.10) 1.00 (-1.00) | 0.89 (-0.89 }
200 0.09 ({-0.06) 1.00 (-1.00) | 095 (-0.95 )

B = 3 50 0.14 (-0.06) 1.00 (-1.00) | 077 (-0.77 )
g = 6 100 0.10 (-0.04) 1.00 (-1.00) | 0.87 (-0.87 )
200 0.07 (-0.02) 1.00 (-1.00) | 094 (-0.94 }

Beta Model

i = 15| 50 0.22 (-0.19) 1.00 (-1.00) { 078 (-0.78 )
w = 1 |100| 019 (-0.17) | 1.00 {-1.00) | 0.87 (-0.87)
200 0.17 (-0.15) 1.00 (-1.00) | 094 (-0.94 )

g = so | 024 (-021) | 1.00 (-1.00) | 0.79 (-0.79)
w = 100 0.21 (-0.19) 1.00 (-1.00) | 0.88 {-0.88 )
200 0.18 (-0.17) 1.00 (-1.00) | 0.94 (-0.94 )

B = 25| 50 0.26 (-0.23) 1.00 (-1.00) | 0.80 (-0.80 ]
w = 1 100 0.23 (-0.21) 1.00 (-1.00) | 0.89 (-0.88 )
200 0.20 (-0.19) 1.00 (-1.00) | 095 (-0.95 )

i} = 3 50 0.27 {-0.25) 1.00 (-1.00) | 0.81 (-0.81)
w = 1 100 0.24 (-0.22} 1.00 {-1.00) | 0.8% (-0.89 )
200 | 021 {-0.20) | 1.00 {-1.00) | 0.95 (-0.95)
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CHAPTER THREE

AN APPLICATION

3.1 INTRODUCTION
This chapter contains an application for the proposed estimators using two real data sets,

which are usually applied and mentioned in line transect sampling literature. The first set is

the stakes data and the other is Hemingway data set.

3.2 STAKES DATA SET

The stakes data which were collected as a part-of a larger study on line transect sampling are
given in Burnham et. al. (1980). These data are used to estimate the density of wooden stakes
in a given area. The perpendicular distances (in meters) are presented in Table (3.1). There
were 150 stakes randomly distributed in an area of L = 1000 meters long within a distance
of 20 meters from the line in such a way that the maximum sighting distance was known. An
observer moves follow the transect line and out of 150 stakes, 68 stakes were detected using
the line transect technique. The true pdf of f (x) was unknown, but the true value of f (0) was
known and it equals 0.110294, Thus the actual density D of stakes was 37.5 stakes/ha.

(where, 1 hectare = 1 ha = 10*m?) and the true number of stakes was N = 150 distributed

in 4 ha. Note that D = _n_ﬁg and N = AD, where A is the sampled area.

The different estimators that developed in this thesis are used to estimate the abundance of

stakes and the standard etror for each estimator is computed by using the bootstrap technique

with 200 iterations. The different estimators of stakes data are implemented by using three
1
values for the smoothing parameter i, h = 1.06 8n'S, by = 1.2h and h, = 0.8h. Morcover,
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the inspection of stakes data show that the perpendicular distance x = 31.31 seems to be are

outlier. Therefore, we consider the two cases; n = 68 (including the value x = 31.31) and

n = 67 (excluding the value x = 31.31).

Table (3.3) gives the point estimators of f(0) in the case 7 = 68. While Table (3.4) gives

the same results when n = 67, As the estimator £(0) of £(0) is computed, the density

estimator is calculated by using the relationship, D = ’%Eﬂ and N = AD.

As Tables (3.3) and (3.4) shown, the different proposed estimators that used in the simulation
study are applied for stakes data. In addition, the proposed estimator (2.2} is also applied for

some values of p <1 (e.g.p =—10, 0.25, 0.5, 0.8). We note here that these values are not
implemented for estimator fp(O) in the simulation study of Chapter 2, because —as we stated
in Chapter 2— the corresponding estimator for p < 1 give a poor performance. By examing
the results of Tables (3.3) and (3.4), it is clear that the estimated values of

F-,(0), £(0), foz25(0), fo5(0) and fo.g(0) are away from the actual value of £(0). In the
other word, the performances of these estimators are very poor compared to other estimators

and the changing of the bandwidth / (see Table 3.3) cannot improve their performances.
The four estimators, £ (0), fi (0), £(0) and f; (0} give —in some sense— similar results for
these data with some preference for estimator £:(0). The same result is obtained in the

simulation study.

A closed look to the results of Tables (3.3) and (3.4) the results show that the estimators

££(0), fr(0), f(0), f7(0) and f5o(0) perform very well for these stakes data. It is

worthwhile to mention here that these estimators are in somehow special cases of estimator

.2 (0) (equation 2.3).
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Table (3.1): The perpendicular distances of wooden stakes data (Burnham et. al. 1930)

{ x; { X i X i x;

1 2.02 18 1.61 35 379 52 849
2 045 19 4.08 36 15.24 53 6.08
3 10.4 20 6.5 37 3.47 54 0.4
4 3.61 21 8.27 38 3.05 55 9.33
5 092 22 4.85 39 7.93 56 0.53
6 10 23 1.47 40 18.15 57 1.23
7 34 24 18.6 41 105 58 167
8 29 25 041 42 441 59 453
£ 8.16 26 0.4 43 1.27 &0 312
10 6.47 27 0.2 44 13.72 61 3.05
11 5.60 28 11.59 45 6.25 62 6.6
12 2.95 29 3.17 46 3.59 63 44
13 3.96 30 71 47 9.04 64 497
14 0.09 31 10.71 48 7.68 65 3.17
15 11.82 32 3.86 49 4.89 €6 7.67
16 14.23 33 6.05 50 9.1 67 13.16
17 2.44 34 6.42 51 3.25 68 31.31
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3.3 HEMINGWAY DATA SET

The second set of real data are the Hemingway data on African ungulates described in
Burnham et. al. (1980). This study detected 73 animals distributed on 60 km of transect line
length. The true density of these detected animals and the true pdf of the perpendicular
distances are unknown. The bootstrap technique with 200 iterations is used to find the
standard error of each estimator that used to estimate f (0) of Hemingway data. Table (3.5}
presents the point estimates of £(0) and D using the proposed estimators and it contains the
relative bias (RB) and relative mean error (RME) for point estimates of f(0), where the

density D unit in this table is animal/ha.

As we show in Table (3.5), the different proposed estimators that used in the simulation study

are applied for Hemingway data.

The value of estimator f.;,(O) also the dependent density D are increases as p increases in the
interval of p [1,2]. Moreover, RME’s of this estimator are decrease in this interval. But we
not prefer this estimator to estimate the density of this data set because it produces an
increasing SE as p increases.

The proposed estimators F(0) and f3 (0) perform more efficient results than the estimator
f1(0) with respect to RB, RME, and SE.

The estimator fo (0) produced more efficient results than the other proposed estimators

specially when used some values of m based on the global measure RME. Finally, the

estimator f7,(0) have a good estimator and we say it to estimate £(0Q) in this data set.
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Table (3.2): The perpendicular distances of Hemingway data (Burnham et. al. 1980)

i Xy t X, i x; i X
1 0 20 41 39 86 58 157
2 0 21 42.1 40 86 59 161
3 0 22 50.8 41 87 60 164
4 0 23 55.1 42 90 61 164
5 0 24 58.5 43 92.3 62 164
6 0 25 63.6 44 94 63 166
7 0 26 64.3 45 96.4 64 175
g ¥ 27 65 46 96.4 65 188
9 8.72 28 68.8 47 106 66 193
10 10.5 29 71.1 43 115 67 200
11 223 30 71.8 49 123 68 200
12 26 31 71.9 50 123 69 246
13 26 32 72.1 51 129 70 260
14 30 33 731 52 129 71 272
15 305 34 76.6 53 143 72 378
16 3.7 35 77.6 54 143 73 400
17 342 36 781 55 150

18 35.1 37 84.5 56 151

19 38 38 845 57 153
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Table (3.3): The point estimators of F(0) for the stakes data set when the sample size is 68 and the true values
of f(0)is 0.110294

F(0 0) Fo
pimator | MOV | YT | Resasn
=3.754 = 4,505 =3.003
A0 0.097578 0.093380 0.100953
fa(® 0.000000 0.000000 0.000000
£2(0) 0.019162 0.033311 0.006187
Fo25(®) 0.054495 0.061705 0.043004
Fos(0) 0.073717 0.076081 0.067759
Fos (O 0.089492 0.087575 0.089487
F.1(0) 0.101117 0.095908 0.106021
f3© 0.107411 0.100390 0.115094
fis(0) 0.112862 0.104262 0.123006
F(0) 0.123848 0.112055 0.139102
f20 0.107924 0.100660 0.116133
Fr(0) 0.107553 0.100627 0.115066
£ ) 0.105861 0.100432 0.110430
£2(0) 0.103228 0.098419 0.107320
72(0) 0.110272 0.102765 0.118717
£(0) 0.110204 0.103032 0.117584
(@ 0.107455 0.101372 0.112754
Fo(@® 0.102035 0.097359 0.105976
Fa (O 0.099661 0.095253 0.103251
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Table (3.4): The point estimators of f (0) for the stakes data set when the sample size is 67 and the true values

of £(0)is 0.110294

f Q) 7(0)
Estimator when using . when using when using
h=1068n" hi=1.2h h2=0.8h
=3.365 = 4,038 =2.692

A0 0.100804 0.097359 0.103323
F00) 0.000002 0.000144 0.000000
£o(0) 0.021682 0.037529 0.007057
Fo25(0) 0.051987 0.061110 0.039046
Fos(0) 0.073153 0.077081 0.065619
fos(® 0.091316 0.090467 0.090126
Fil(0 0.104983 0.100381 0.109202
£3(0) 0.112447 0.105763 0.119787
fis(0) 0.118936 0.110433 0.129081
£(0) 0.132079 0.119866 0.148167
fa (0) 0.113146 0.106137 0.121171
F0) 0.112582 0.106040 0.119787
£2(0) 0.109735 0.105203 0.113350
fi©) 0.106832 0.102787 0.110040
£2(0) 0.115754 0.108544 0.124022
f1(0) 0.115403 0.108732 0.121826
£7(0) 0.111725 0.106519 0.115906
f5o () 0.105558 0.101643 0.108627
Fo(® 0.103007 0.099369 0.105721
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Table (3.5): The point estimators of f (0), D, relative bias (RB), relative mean e

error of each estimator of £(0) for the Hemingway data set. The bandwidth
and n = 73. The true values of £(0), D are unknown

rror (RME) and the standard

b= 106607 =58209 ,

Estimator | F{0) RB RME b Q)
2(0) | 0005725 | 0.020878 | 0024433 | 0.034827 | 0.000074
7. | 0005969 | -0.020797 | 0024282 | 0036313 | 0.000076
7.0) | 0008407 | -0.020599 | 0.023984 | 0.038978 | 0.000080
7.0 | 0.006790 | -0.020378 | 0023702 | 0.041306 | 0.000084
fz (0 0.007571 -0.019811 0.023086 0.046055 0.000092
7o) | 0006450 | -0.020864 | 0023933 | 0039236 | 0.000081
70) | 0006422 | -0.020249 | 0023631 | 0.039069 ; 0.000080
70 | 0006237 | -0.018361 | 0.021990 | 0.037942 | 0.000077
a0 0.006081 -0.018516 | 0.022224 0.036993 0.000076
£:0) | 0.006618 | -0.019643 | 0.023042 | 0.040260 | 0.000081
f; (0) 0.006571 -0.018328 0.021788 0.039972 0.000079
Fr@) | 0006340 | -0.018319 | 0021864 | 0.038565 | 0.000077
fo(@) | 0.006007 | -0.019056 | 0.022721 | 0.036542 | 0.000076
7o0) | 0.005848 | 0021042 | 0.024767 | 0.035574 | 0.000075
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CHAPTER FOUR

CONCLUSIONS AND FUTURE WORK

4.1 OVERVIEW

In this chapter, we will summarize the conclusions of this thesis. In addition, we note some

remarks and give research ideas for further studies.

4.2 CONCLUSIONS

On the basis of the previous two chapters we summarize the following conclusions:

(1) The variation of the smoothing parameter (bandwidth) A increasing or decreasing
improve the performances of the different estimators in some cases but in the other cases

their performances become worse (i.e. the bandwidth selections have not played a critical
role in improving the kernel estimator fp (0)). Therefore, we generally recommend to use
therule h = 1.06 5 n—% without any modifications of this rule when we estimate £(0).

(2) The value of estimator f:, (0) is very sensitive to the choice of p.

(3) The value of estimator f:,(O) increases as p increases in the interval (1 < p = 2).

(4) The performances of estimator f;,(O) are satisfactory for 1 < p < 2. In the other hand,
the performance of fp (0) becomes very poor as we take p away below 1 or away above

2.

(5) The RMEs of £>(0) are —generally— not decreasing when » increases, which indicates

that £, (0) is not even a consistent estimator for F0).
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(6) Also, we advise to exclude poor performance estimators from the future researches; in
particularly f.1(0), and fo(0). Moreover, the estimator f;(O) has given unsuitable
performance in the cases of p lic out of the range [1,2].

(7) The estimator £:(0) is surprising in most considered cases. Therefore, we can be
implemented to use this estimator in line transect sampling to estimate f(0) and
consequently to estimate the abundance D according to the following rule:

a. If the collected perpendicular distances Xy, X2, ..« Xn haven’t a shoulder at the origin

then f (0) with m around the value 4 can be used.

b. If the perpendicular distances seem to be have a shoulder condition at the origin then

f2(0) with a value of m around 15 can be used.

c. If there is no information about the model shape of the perpendicular distances then

we recommend to use fi- (0) with a value of m around 10.
(8) The estimators Fr(0), £ (0), f(0) and fi(0) give very similar performances with
overall a slight preference for fr(0). In general, their performances are acceptable

comparing to that of £(0).

(9) At the end, the use of the nonparametric proposed estimators (specially the estimator
f2(0)) may be recommended in line transect studies since they turns out to be accurate

and robust for several cases considered in the sense that it shows stable performance for

very different models.
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4.3 FUTURE WORK

There are various possibilities for future research, some suggestions would include:

(1) The surprise results of the proposed estimator f(0) which are leading to interest and to

derive the mathematical properties of their, since they have good statistical properties. So

that, we still need more work to enhance this estimators in future.
(2) The performances of the proposed estimator f+(0) can be changed when using other

correction factors which need to study and to compare the effect of these new correction

factors.

(3) The estimator f;,(O) have various performances in some models. Therefore, we advise to

use it in estimating £(0) through other estimator like £1(0).
(4) However, the proposed estimators could be use in other life fields needing to

estimate £(0); particularly in the wildlife studies.
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